

Testing and Improving OMI Tropospheric NO₂ Using Observations from the DANDELIONS and INTEX-B Validation Campaigns

J. Hains and the OMI Validation Team

KNMI, AK, De Bilt, Netherlands (hains@knmi.nl)

We present a validation of tropospheric NO₂ columns from the Ozone Monitoring Instrument (OMI) using measurements from the Dutch Aerosol and Nitrogen Dioxide Experiments for vaLIdation of OMI and SCIAMACHY (DANDELIONS) and Intercontinental Transport Experiment (INTEX-B) campaigns held in 2006. These unique campaigns covered a wide range of pollution scenarios and provided detailed information on the vertical distribution of NO₂. We examine how changes in the a priori profiles and albedo assumptions affect the OMI NO₂ retrieval. The absolute average change in tropospheric columns retrieved with measured profiles and improved albedos is 23% with a standard deviation of 31%. We present two case studies related to pollution in the Southeastern US and Anchorage, Alaska to exemplify these changes. For most cases, using improved a priori information improves the OMI retrievals. This validation study lays the groundwork for examining trends in tropospheric NO₂. We analyze changes in tropospheric NO₂ observed from OMI between 2004 and 2008 in the United States and China. Our results suggest that the EPA Clean Air Act is taking effect in a number of states in the eastern United States with an average decrease of 19% (from 2004-2008), whereas previously reported increasing levels of air pollution in China, determined from GOME and SCIAMACHY, appear to continue at a high pace of 28% from 2004 to 2008.