Geophysical Research Abstracts, Vol. 11, EGU2009-6069, 2009 EGU General Assembly 2009 © Author(s) 2009

Differential responses to anthropogenic N on the C balance of tropical lowland and montane forests in Panama

E. Veldkamp, M.D. Corre, M. Adamek, and B. Koehler

University of Göttingen, Buesgen Institute, Soil Science of Tropical Ecosystems, Göttingen, Germany (eveldka@gwdg.de)

N deposition is projected to double in tropical forests but consequences for the carbon balance are severely understudied. We used N-addition experiments (125 kg Urea-N $ha^{-1} yr^{-1}$) to obtain N-enriched conditions in contrasting lowland and montane tropical forests with the following goals: 1) to evaluate how increased anthropogenic N affects net primary production, NPP (stem growth, litterfall, fine root production) and 2) to evaluate how increased anthropogenic N affects soil C cycling. The experiment in the lowland forest was conducted in a species-rich, old-growth forest on a Cambisol with a relatively high buffering capacity. The experiment in the montane forest was conducted in a species-rich, old-growth forest on an Andisol with low buffering capacity.

In the lowland forest NPP was neither N- nor phosphorus-limited. Stem diameter growth, fine root biomass, and fine litterfall were not significantly effected by 4, 5 and 6 years of N addition, respectively. Soil CO2 efflux and total belowground C allocation (TBCA) in this lowland forest did not differ after 9-10 yr N addition from the control, suggesting that chronic N input to this nutrient-rich tropical lowland forests did not affect the C balance. In the montane forest, overall stem diameter growth and above-ground woody biomass production (AWBP) were influenced by the disparity of responses to N fertilization of the different DBH classes and/or species. Stem growth of trees in 10-30 cm DBH class tended to be stimulated quickly by N addition while trees >30 cm DBH showed a slower response. Among the most abundant species, stem diameter growth of Eschweilera panamensis in 10-30 cm DBH class was higher in the N-fertilized than the control plots in the first year. Stem growth of other species showed no reaction to N addition. Fine litterfall, of which 67 % was leaf litter, increased with N fertilization. ANPP (AWBP + fine litterfall) increased with N addition in the first year, to which 66 % was contributed by fine litterfall. Production and turnover of fine roots were not affected by N fertilization after 1.5 years, but the fine root biomass allocated to the 10-20 cm mineral soil depth in the N-fertilized plots was increased two-fold compared to the control. In the montane forest, 1-yr N addition did not affect soil CO2 efflux but annual CO2 efflux was reduced by 16% in the second year N addition compared to the control. This reduced soil CO₂ efflux in combination with higher litterfall suggests an increase in soil C storage following N enrichment.

The combined results suggest that if projected increases in N deposition to the montane forest occur, species with N-limited productivity may gain advantage over species which are adapted well to the inherent N availability. Furthermore, N deposition may lead to enhanced C sequestration both in plant biomass and in the soil. In contrast, we found no evidence that on decadal time scale increased N deposition to the lowland forest will affect species composition and C sequestration.