

N-P-K balance in a milk production system on a *C. nlemfuensis* grassland and a biomass bank of *P. purpureum* CT-115 clone

G. Crespo, I. Rodriguez, and O. Martinez

Animal Science Institute, Apartado 24, San José de Las Lajas, La Habana, Cuba. (gcrespo@ica.co.cu)

In very intensive milk production systems in Europe and America with the use of high amounts of chemical fertilizers, the nutrient recycling models consider the losses by leaching and N volatilization, as well as the hydro physical characteristics of the soil affecting the performance of this element (10; 6). However, in more extensive milk production systems, low input agriculture forming the natural cycle occurring within each farm, is of vital importance to potentiate nutrient recycling for a stable animal production. The objective is the determination of the values of N, P and K inputs and outputs in a dairy farm with a sward composed by 60% of *C. nlemfuensis* and 40% of *P. purpureum* CT-115, associated with legumes in 28% of the area and the balance of these nutrients in the system using the "Recycling" software proposed by Crespo et al (2007).

The grassland covered an area of 53.4 ha, composed by *C. nlemfuensis* (60%), *P. purpureum* CT-115 (40%) and *L. leucocephala* and *C. cajan* legumes intercropped in 28% of the area. The dairy herd consisted of 114 cows, 35 replacement heifers and 24 calves. There was a milk yield of 100 000 litters and the animals consumed 825 t DM from pastures and 75.1 t DM from other supplementary feeds. Nutrients extracted by pastures, nutrients intake by animals from pastures, symbiotically N fixation by legumes and N, P and K determinations outside the system due to animal production were determined (3-11). Volatilized ammonia, nutrient input and litter accumulated in the paddocks were measured once each season of the year.

In the whole system the balance indicates negative values of N, P and K. Out of the total amount of nutrients consumed, animals used only 16 kg N, 5 Kg P and 4 Kg K for milk production, LW gain and calf production, the remainder returned to the system through excretions. Hence, more than 90% of the N and K, and approximately 81% of the P consumed by the animals were recycled to the system through the excretions. These results agree with those reported by Jarvis (1993) and Cadish et al (1994). However, 40% of the excretions occurred in the shade buildings and milking parlours and thus these nutrients did not recycle in the system. An important internal recycling mechanism, especially for nitrogen and potassium, is their remobilization by the rejected pasture to re-use them for the regrowth activity. This is of particular interest in CT-115 Bank, since stems of CT-115 plants left after grazing remobilize an important amount of these nutrients, guarantee a favourable pasture regrowth (Martinez 1996).

The return of all the excretion to the grassland is recommended as well as increasing the area of legumes to attain a satisfactory balance of N, P and K in the system. Further studies must consider maintenance fertilization, nutrient losses due to leaching and denitrification, as well as variation of the stable OM in the soil and the influence of hydro physical properties in the recycling process. The "Recycling" software was effective to determine the balance of nutrients in the dairy farm.

Cadish, G., Schunke, R.N & Giller, K.E. 1994. Nitrogen cycling in a pure grass pasture and a grass-legume mixture on a red latosol in Brazil. *Tropical Grasslands* 28:43.

Crespo G. y Rodríguez, I. 2006. Contribución al conocimiento del reciclaje de los nutrientes en el sistema suelo-pasto-animal. Instituto de Ciencia Animal, Editorial EDICA, La Habana, Cuba, 94 pp.

Hirata, M., Sugimoto, Y.G & Ueno, M. 1991. Use of a mathematical model to evaluate the effects of dung from grazing animals on pasture production. *J. Japan Grassld. Sci.* 37:303.