

Pleistocene fluctuations of the Antarctic Ice Sheet in the Ross Embayment

R.M. McKay (1), T.R. Naish (1), and R.D. Powell (2)

(1) Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand
(robert.mckay@vuw.ac.nz/+64-4-463 5186), (2) Department of Geology and Environmental Sciences, Northern Illinois University, Dekalb, USA

Past fluctuations of the marine-based Antarctic Ice Sheet in the Ross Embayment are reconstructed for the Pleistocene by developing a model for the glacimarine depositional sequences documented from the ANDRILL McMurdo Ice Shelf project drill core AND-1B. This model reveals glacial to interglacial fluctuations of the AIS in the Western Ross Embayment responding at orbital frequencies. Chronology is constrained by an age model based on $^{40}\text{Ar}/^{39}\text{Ar}$ dating of volcanic ashes and magnetostratigraphy. The glacimarine sequences in AND-1B appear to correlate one-to-one with cycles in the benthic $\delta^{18}\text{O}$ record for the past ~ 0.8 Myr (Marine Isotope Stages 20-2). Five sequences between ~ 1.7 and 1.0 Myr can also be matched with specific intervals in the $\delta^{18}\text{O}$ record, and indicate oscillations of the AIS grounding line operating at a 40-kyr frequency. This record provides new insight into the response of the AIS in the Ross Embayment across the Mid-Pleistocene Transition. Prior to 1.0 Myr, glacimarine sequences have 40-kyr duration, whereas subsequently 100-kyr glacimarine cycles can be clearly recognised in the core. During this “100-kyr world”, subglacial to grounding-zone sedimentation dominates at the AND-1B site, with thin intervals of ice-shelf deposition during interglacials also preserved in the AND-1B sedimentary record. An unconformity in AND-1B that spans most (~ 200 kyr) of the Mid-Pleistocene Transition is inferred to represent large scale expansion of AIS in the Ross Embayment at ~ 0.8 Myr. Prior to the Mid-Pleistocene Transition, interglacial periods are characterised by open-water conditions with high abundances of volcanoclastic deposits and occasional diatomaceous sediments, indicating that the marine based ice sheet was more dynamic during this interval.