

Multi-scale, Finite-frequency Travel-Time Tomography Illuminates 3-D Seismic Velocity Structure beneath Western Tibet

S.-H. Hung (1), W.-P. Chen (2), L.-Y. Chiao (3), and T.-L. Tseng (2)

(1) National Taiwan University, Department of Geosciences, Taipei, 10617, Taiwan (shung@ntu.edu.tw), (2) Department of Geology, University of Illinois, Urbana, IL 61801 USA, (3) Institute of Oceanography, National Taiwan University, Taipei, 10617, Taiwan

With a new multi-scale parameterization and advanced finite-frequency theory, we resolve 3-D variations in P - and S -wave speeds (V_P and V_S) in both the crust and the upper mantle beneath Tibet. The resulting V_P and V_S models reveal that regions of low electric resistivity, previously observed along active rifts in southern Tibet, correlate well with regions of both low V_P and V_S wave speeds but such regions are not interconnected, indicating that channel-like crustal flow is inactive. In the upper mantle, there is no indication of down-welling between depths of 100 to 400 km. Instead, a strong, lateral boundary between fast and slow seismic velocities occurs north of 33°N, marking the northern limit of underthrusting Indian lithospheric mantle.