

Simulation of the isotopic composition of molecular hydrogen in the stratosphere

J.-U. Grooß (1), T. Röckmann (2), G. Pieterse (2), and T. S. Rhee (3)

(1) Forschungszentrum Jülich, Institut für Chemie und Physik der Geosphäre 1: Stratosphäre (ICG-1), Jülich, Germany
(j.-u.grooss@fz-juelich.de), (2) Institute for Marine and Atmospheric Research, Utrecht University, The Netherlands, (3) Korea Polar Research Institute, Incheon, Korea

Molecular hydrogen has both source and sink in the stratosphere yielding an approximately constant mixing ratio of about 0.5 ppmv. The stratospheric source and sink processes of H_2 can therefore be investigated using the isotopic composition. Stratospheric observations of isotopic composition of molecular hydrogen showed deuterium enrichment of H_2 with a tight correlation with CH_4 decrease that is rather independent of latitude (Röckmann et al., 2003).

We present simulations of the hydrogen isotope ratios of H_2 and CH_4 in the stratosphere. A consistent hydrogen isotope chemistry scheme for the whole CH_4 oxidation chain was incorporated into the chemistry module of the Chemical Lagrangian Model of the Stratosphere (CLaMS). The simulations are performed using a simplified representative box model approach. The results are compared with simultaneous observations of the isotopic composition of CH_4 and H_2 . We also show the sensitivity with respect to uncertainties in the individual branching ratios and fractionation constants. As many isotope fractionation factors and branching ratios of the CH_4 oxidation chain are not known with high accuracy, the simultaneous comparison of the deuterium enrichment of both CH_4 and H_2 and their correlation with CH_4 is important for the evaluation of the different sensitivities.