

Combined surface solar brightening and increasing greenhouse effect favour recent intensification of the hydrological cycle

M. Wild (1), C. Schaer (1), and J. Grieser (2)

(1) Swiss Federal Institute of Technology, Institute for Atmospheric and Climate Science ETH, Zurich, Switzerland
(martin.wild@env.ethz.ch), (2) Risk Management Solutions, 30 Monument Street, London, U.K.

The surface net radiation (surface radiation balance) is the key driver behind the global hydrological cycle. A first order estimate of the changes in its individual radiative components suggests that surface net radiation has recently been substantially increasing, on the order of 0.2 Wm⁻²y⁻¹ over the 15-years period 1986-2000, after several decades with no such indications. Increases in both downward solar radiation with more transparent atmospheres, and downward thermal radiation with enhanced atmospheric greenhouse-gas concentration have similarly contributed to this recent increase. The additional surface radiative energy may have favored an intensification of the hydrological cycle and is consistent with the rapid increase in land precipitation observed over the same period. The concurrent changes in surface net radiation and the hydrological cycle were particularly pronounced in the recovery phase from the Mount Pinatubo volcanic eruption, but remain evident since the mid-1980s also after discarding the Pinatubo effects.

References:

Wild, M., Grieser, J. and Schär, C. 2008: Combined surface solar brightening and greenhouse effect support recent intensification of the global land-based hydrological cycle. *Geophys. Res. Lett.*, 35, L17706, doi:10.1029/2008GL034842.

Wild, M., 2007: Decadal changes in surface radiative fluxes and their importance in the context of global climate change, in: *Climate Variability and Extremes during the Past 100 years, Advances in Global Change Research* 33, Editors S. Brönnimann et al.

Lincoln, T., 2008: A bright side of precipitation, *Nature*, 455 (7211), p. 298