Geophysical Research Abstracts, Vol. 11, EGU2009-7510-1, 2009 EGU General Assembly 2009 © Author(s) 2009

Quantum chemical studies on HSO5 - related nucleation

T. Kurtén (1), T. Berndt (2), M. Toivola (1), H. Vehkamäki (1), F. Stratmann (2), and M. Kulmala (1) (1) University of Helsinki, Department of Physical Sciences, Helsingin Yliopisto, Finland (theo.kurten@helsinki.fi), (2) Leibniz-Institut für Troposphärenforschung, Leipzig, Germany

Recent laboratory experiments on SO_2 and H_2SO_4 - based nucleation give reason to believe that other sulfur - containing molecules than H_2SO_4 are likely to be involved in atmospheric new-particle formation from SO_2 oxidation in the presence of water. Specifically, reactions involving HSO_5 intermediate radicals have been proposed to give rise to products that either nucleate more efficiently than $H_2SO_4 + H_2O$, or enhance $H_2SO_4 + H_2O$ nucleation.

We have used quantum chemical methods to study possible first steps of alternative nucleation pathways in the SO_2 oxidation process. Computed formation thermodynamics indicate that a mixture of sulfuric acid with molecules containing more than one sulfur atom, such as peroxydisulfuric acid, $H_2S_2O_8$, is likely to nucleate more effective than sulfuric acid on its own.

The central uncertainty in nucleation mechanisms involving HSO_5 is the lifetime of this metastable intermediate radical. Previous modeling studies have predicted the dissociation of HSO_5 into SO_3 and HO_2 to be very rapid, leading to a short lifetime of HSO_5 , and a low net yield for the pathways forming alternative reaction products such as $H_2S_2O_8$. However, these studies have not accounted for the effect of hydration on the stability of HSO_5 . High-level quantum chemical calculations demonstrate that HSO_5 is much more strongly hydrated than SO_3 and HO_2 , leading to a significant increase in its lifetime with respect to dissociation. At least partial proton transfer from HSO_5 to H_2O is predicted to occur in the $HSO_5(H_2O)_2$ cluster, which may have important implications for the reactivity of hydrated HSO_5 .