

Tropospheric chemistry of emissions from the Antarctic volcano, Mt. Erebus

C. Oppenheimer (1), D. Davis (2), and P. Kyle (3)

(1) Department of Geography, University of Cambridge (co200@cam.ac.uk), (2) School of Earth and Atmospheric Sciences, Georgia Institute of Technology, USA, (3) Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, USA

We report here measurements of gaseous species in the plume emitted by Erebus volcano, Antarctica, made during the austral summer of 2005. The first set of observations was recorded using a Twin Otter instrumented aircraft, which intercepted the plume at variable distances (up to 56 km) from the active crater. The second set of measurements was made by open-path infrared absorption spectroscopy with an FTIR instrument positioned on the crater rim. The airborne measurements sampled the plume up to 9 h in age, while the ground-based observations pertain to emissions less than 1 min after their release from the active lava lake contained in the crater. The species CO, OCS and SO₂ were measured using both air and ground based instruments. These observations revealed that, while CO and OCS were conserved in the plume during atmospheric transport, the abundance of SO₂ relative to CO was found to be lower by approximately two-thirds beyond the crater rim. However, over the entire length of the directly sampled plume, the ratio of CO:SO₂, did not significantly change. The airborne instrumentation also yielded further observations of volcanic H₂SO₄ and HNO₃ as well as the first volcanic plume observations of the trace gas species, HO₂NO₂. Interestingly, no NO_x was present. Since NO₂ has previously been detected in the proximal Erebus plume, we conclude that NO_x was quickly oxidized to nitric and pernitric acid, and probably nitrate in the aerosol phase. It is also possible that this occurred in tandem with the conversion of SO₂ to sulfate. If true, one can speculate that rapid heterogeneous chemical processes occurred by “cloud-processing” in an early stage of the plume’s evolution in which liquid phase aerosol was abundant. In plumes older than about 4 h, we also report substantial ozone depletion, leading to the hypothesis that other nitrogen species were produced in the crater, which contain chlorine and bromine. We further speculate that the photolysis of these halo-nitrates could then release reactive halogens that would lead to O₃ depletion in air entrained into the plume.