

Deuterium content of H₂ measured on air samples from the CARIBIC project

A.M. Batenburg (1), T. Schuck (2), C.A.M. Brenninkmeijer (2), and T. Röckmann (1)

(1) Utrecht University (UU), Institute for Marine and Atmospheric Research (IMAU), Physics & Astronomy, Utrecht, the Netherlands (annekebatenburg@gmail.com), (2) Max Planck Institute for Chemistry, Atmospheric Chemistry Division, Mainz, Germany

H₂ is present in the atmosphere at levels of ~500 ppb; its largest sources are the oxidation of methane and other hydrocarbons and combustion processes. In the coming decades, H₂ levels are expected to rise due to use of hydrogen as an energy carrier. This may affect methane lifetimes and stratospheric ozone depletion. Unfortunately, large uncertainties still exist in the global H₂ budget. The different sources and sinks of H₂ have very distinct isotopic signatures and fractionation coefficients, respectively. For this reason, measurements of isotopic composition are a promising tool to gain insight into H₂ source and sink processes and to constrain the terms in the global budget.

The CARIBIC project uses an automated instrument container on board of a commercial passenger aircraft to carry out in situ measurements of trace gases and aerosols and to collect air samples. The use of a commercial airliner results in samples mostly from the Upper Troposphere-Lower Stratosphere (UTLS) region. Although the UTLS region is considered to be an interesting part of the atmosphere, relatively few measurements have been made there before. The CARIBIC samples are routinely analyzed for various gases, including four important greenhouse gases.

In addition, air samples of 15 CARIBIC flights have now been analyzed for molecular hydrogen concentration (H₂) and H₂ deuterium content (δD -H₂) in the isotope laboratory of the Institute of Marine and Atmospheric Research Utrecht (IMAU). A GC-IRMS system (similar to *Rhee et al. [2004]*) is used to determine the concentration and deuterium content of atmospheric H₂ precisely and routinely. This poster will present a selection of the first results.

For some flights, samples close to the takeoff and landing region show strong contamination signatures (high H₂ concentrations and low δD -H₂ values). With the exclusion of these samples, δD values correlate negatively with methane concentration, as observed previously by *Rahn et al. [2003]* and *Röckmann et al. [2003]*. Samples from the stratosphere tend to have lower methane concentrations and higher δD -H₂ values.

References

Rhee, T.S., J. Mak, T. Röckmann, and C.A.M. Brenninkmeijer (2004), Continuous-flow isotope analysis of the deuterium/hydrogen ratio in atmospheric hydrogen, *Rapid Commun. Mass Spectrom.*, **18**, 299-306

Rahn, T., J.M. Eiler, K.A. Boering, P.O. Wennberg, M.C. McCarthy, S. Tyler, S. Schauffler, S. Donnelly, and E. Atlas (2003), Extreme deuterium enrichment in stratospheric hydrogen and the global atmospheric budget of H₂, *Nature*, **424**, 918-921

Röckmann, T., T.S. Rhee, and A. Engel (2003), Heavy hydrogen in the stratosphere, *Atmos. Chem. Phys.*, **3**, 2015-2023

<http://www.caribic-atmospheric.com>