

Anoxia and nitrous oxide production after slurry injection into soil

R. Markfoged (1), NP. Revsbech (1), L. DM. Ottosen (1), T. Nyord (2), and LP. Nielsen (1)

(1) University of Aarhus, Biology, Microbiology, Aarhus, Denmark (rikke.markfoged@biology.au.dk), (2) University of Aarhus, Faculty of Agricultural Science, Agricultural Engineering, Tjele, Denmark

Injection of liquid manure into soil reduces ammonia (NH_3) volatilization and odor emission compared to band spreading but increases nitrous oxide (N_2O) emission. To understand the conditions governing the emission of N_2O , micro scale distribution of O_2 and N_2O in soil was measured in the soil. Raw liquid pig manure was injected into closed slots 5 cm below ground at 0.9 L m^{-1} . Vertical microsensor profiles of N_2O and O_2 revealed a circular zone of anoxia around the slit with a cross section diameter up to 6 cm and a peak of N_2O up to $125 \mu\text{M}$ in the middle of the anoxic zone. Emission rates of N_2O were calculated from concentration gradients of N_2O in the manure slit, and they matched the rate directly measured at the surface. Results showed that N_2O emission rate peaked 2 days after injection (between $600\text{--}700 \mu\text{mol m}^{-2} \text{ day}^{-1}$). After 4 days the emission of N_2O was undetectable from profile calculations and $<30 \mu\text{mol m}^{-2} \text{ day}^{-1}$ from measured emissions, although anoxic conditions in the slit persisted, suggesting that N_2O reductase was fully induced a few days after injection.