

Pedogeochemical mapping of heavy metals with kriging techniques: Lead and Chromium in soils of the Barcelona province (NE Spain)

J Bech (1), P Tume (2), P Sánchez (3), F Reverter (3), J Bech (4), A Lansac (1), L Longan (1), and T Oliver (1)

(1) Soil Science Chair, Faculty of Biology. University of Barcelona. Avda. Diagonal 645 (08028). Barcelona. Spain.

Corresponding author: jbech@ub.edu, (2) Facultad de Ingeniería. Universidad Católica de la Santísima Concepción, casilla

297. Concepción. Chile. , (3) Department of Statistics, Faculty of Biology. University of Barcelona. Avda. Diagonal 645

(08028). Barcelona. Spain., (4) Department of Atronomy and Meteorology, Faculty of Physics. University of Barcelona. Avda. Diagonal 647 (08028). Barcelona. Spain.

Analysis of the spatial distribution of heavy metals in soils is of fundamental importance in a number of applications including the delineation of potentially polluted spots at unsampled sites. In this study, 316 topsoil samples (0-20 cm) located approximately in a 5 km regular grid covering the Barcelona province (7728 square km) have been examined. The geology in this area is varied: granodiorites and Paleozoic shales are predominant in the SE-E and Mesozoic and Tertiary limestones, dolomites, marlstones, gypsum and sandstones in the remainder of the province. Heavy metals considered in this paper were lead and chromium. Soil samples (<2mm fraction) were analyzed by standard methods. Aqua regia digest (ISO 11466.2002) of Pb and Cr were determined by ICP-ES (Polyscan 61E Spectrometer). Experimental variograms have been analysed, considering both omni-directional and anisotropic cases. Theoretical variograms fitted with the experimental data were used to map heavy metal concentrations at 1 km regular grid using kriging techniques. Finally, the pedogeochemical maps obtained are discussed in terms of the soil properties, human activities and geological characteristics of the region.