

Detrended-Fluctuation Analysis of Nematode Movement in Heterogeneous Environment

S.M. Hapca (1), P. Gonzalez-Nieto (2), and A.M. Tarquis (3)

(1) SIMBIOS Centre, University of Abertay Dundee, UK. (simona.hapca@abertay.ac.uk), (2) Fac. Biologicas. Univ. Complutense de Madrid, Spain. (maplopez@bio.ucm.es), (3) CEIGRAM - ETSI Agronomos. Univ. Politecnica de Madrid, Spain. (anamaria.tarquis@upm.es)

Abstract: We consider multifractal analysis in time scale to analyse the effect of structural heterogeneity on the movement of the slug-parasitic nematode, *Phasmarhabditis hermaphrodita*. The study involves image recording and analysis of nematode movement on a homogeneous layer of technical agar compared to movement of nematodes in a structurally heterogeneous environment that was created by adding sand particles to the plates of agar. The temporal scaling properties of the recorded trails were studied using a detrended fluctuation based method to capture the complex dynamic of movement data by comparing the multiscaling characteristics of nematode step lengths as affected by the different environments.

A systematic analysis of the exponent of the structure function and the generalized Hurst exponent revealed that, while in homogeneous environment the movement was characterized by a long-range correlation with a Hurst exponent $H(q)$ close to 1, varying little with respect to the order q of the fluctuation function, the impact of sand particle was to reduce the degree of persistence in the movement, the step lengths being characterized by a smaller Hurst exponent, yet more variable. The results suggest that the presence of structural heterogeneity introduces a new bias into the movement, which plays an important role in complex environments where the nematode movement may be obstructed by soil particles.

References

Tarquis, A.M., Morato, M. C., Castellanos M.T., Perdigones A. 2009. Comparison of Structure Function and Detrended Fluctuation Analysis of Wind Time Series, *Riv. Nuevo Cimento*, in press.

Gao, J., Cao, Y., Tung, W.-W., Hu J., 2007. Multiscale Analysis of Complex Times Series. Eds. John Wiley & Sons.