

Influence of very-long-distance earthquakes on the ionosphere?

E.V. Liperovskaya (1), C.-V. Meister (2), P.-F. Biagi (3), V.A. Liperovsky (1), and M.V. Rodkin (4)

(1) Institute of Physics of the Earth, Moscow (liper@ifz.ru), (2) Technical University Darmstadt, Germany (c.v.meister@skmail.ikp.physik.tu-darmstadt.de), (3) University Bary, Italy, (4) Geophysical Centre, Moscow, Russia

In the present work, variations of the critical frequency $foF2$ obtained every hour by the ionospheric sounding station Tashkent ($41.3^{\circ}N$, $69.6^{\circ}E$) in the years 1964-1996 are considered. Mean values of data found at daytime between 11 LT and 16 LT are investigated. Disturbances of $foF2$ related to earthquakes are studied on the background of seasonal, geomagnetic, 11-years and 27-days solar variations. Normalized values F are used in the analysis, which are obtained excluding the seasonal run by subtracting the mean value of $foF2$ during the time interval of 14 days, from 7 days before the earthquake until seven days after the event, and dividing the result on its standard deviation. Days with high solar (Wolf number > 200) and geomagnetic ($\Sigma Kp > 25$) disturbances are excluded from the analysis. Using the method of superposition of epoches it is concluded, that at the day of the earthquake the $foF2$ value decreases a) in case of earthquakes with magnitudes $M > 6.5$ at any place on the Earth, if the depth h of the epicentre satisfies $h < 200$ km, b) in connection with earthquakes with magnitudes $6.5 > M > 6.0$ occurring in the Middle Asia region, if $h < 70$ km is satisfied, and c) in connection with earthquakes with magnitudes $6.0 > M > 5.5$ appearing at a distance from Tashkent smaller than 1000 km if one has $h < 70$ km. In all investigated cases the reliability of the effect is larger than 95 %. The ratio of the number of earthquakes with a decrease of the $foF2$ -value to the number of earthquakes where $foF2$ grows is about 2. The decrease of the $foF2$ -value is also obtained some hours before and some hours - a day - after the event. Thus, one may assume that before an earthquake happening at a long distance, in the vicinity of the sounding station seismo-gravity waves with periods between half an hour and a few hours propagate through the earth's core. After long-distance earthquakes, seismic waves propagate in the vicinity of the sounding station. But in both cases, the radon emanation is activated. As a result of the increase of the radon concentration in the atmosphere, the value of $foF2$ decreases.