



## **Jurassic-Cretaceous clastic sequences of Chukotka: sedimentation, structural style and geodynamic implications for Russian East Arctic shelf.**

M.I. Tuchkova (1), S.D. Sokolov (1), and V.E. Verzhbitsky (2)

(1) Geological Institute of Russian Academy of Sciences, Laboratory of tectonics of oceans and perioceanic zones, Moscow, Russian Federation (sokolov@ginras.ru), (2) TGS-NOPEC Geophysical Company Moscow Ltd, Donskaya St 4, Bld. 3, Office 303, Moscow, Russia, e-mail: vladimir.verzhbitsky@tgsonopec.ru

Jurassic-Lower Cretaceous sedimentary sequence, exposed on the Chukotka continental margin is critical for understanding the timing, dynamics and sedimentary setting evolution of Chukotka-Eurasia collisional process (e.g., Sokolov et al., 2002) and so, represents one of the key regional stratigraphic units (Til'man, 1973, Tibilov, 1982; Miller et al., 2002, 2007). From the other hand, this research may shed the light on the widely discussing problem of the Canadian and Makarov basins opening (e.g., Miller, Verzhbitsky, in press). Jurassic-Lower Cretaceous sedimentary complexes of the Chukotka microcontinent are composed of terrigenous deposits.

Those sedimentary complexes are enriched by organic matter, and fresh clastic materials. Fragments of shales, sometimes laminated or cleaved are their indicator constituents. Sandstones are arkosic. The percentage of types of rocks fragments is different in Jurassic and Cretaceous deposits. Chemical composition of the Jurassic-Cretaceous rocks is not uniform too: Upper Jurassic sandstones form one group depleted in Na<sub>2</sub>O+K<sub>2</sub>O, Cretaceous sandstones, enriched in Na<sub>2</sub>O+K<sub>2</sub>O. Thus, our investigations indicate that Jurassic-Cretaceous sedimentary basins were related to different source provenance.

We believe, that the stratigraphy and composition of Jurassic-Lower Cretaceous onshore sequences are crucial for prediction of the geological structure of East Siberian and Chukchi Sea shelf (1), understanding the evolution of Mesozoic sedimentary basins of East Arctic (2) and testifying the existing geodynamic models of Amerasian Basin opening (3).

The work is supported by the Russian Foundation for Basic Research (grant 08-05-00547), program of ONZ RAS 14, and NSH-3172.2008.5.