

Watershed modeling tools and data for prognostic and diagnostic

P. Chambel-Leitao, D. Brito, and R. Neves

IST – MARETEC Secção de Ambiente e Energia Av. Rovisco Pais 1049-001 Lisboa - Portugal (chambelpc@ist.utl.pt)

When eutrophication is considered an important process to control it can be accomplished reducing nitrogen and phosphorus losses from both point and nonpoint sources and helping to assess the effectiveness of the pollution reduction strategy.

HARP-NUT guidelines (Guidelines on Harmonized Quantification and Reporting Procedures for Nutrients) (Borgvang & Selvik, 2000) are presented by OSPAR as the best common quantification and reporting procedures for calculating the reduction of nutrient inputs. In 2000, OSPAR HARP-NUT guidelines on a trial basis. They were intended to serve as a tool for OSPAR Contracting Parties to report, in a harmonized manner, their different commitments, present or future, with regard to nutrients under the OSPAR Convention, in particular the “Strategy to Combat Eutrophication”.

HARP-NUT Guidelines (Borgvang and Selvik, 2000; Schoumans, 2003) were developed to quantify and report on the individual sources of nitrogen and phosphorus discharges/losses to surface waters (Source Orientated Approach). These results can be compared to nitrogen and phosphorus figures with the total riverine loads measured at downstream monitoring points (Load Orientated Approach), as load reconciliation. Nitrogen and phosphorus retention in river systems represents the connecting link between the “Source Orientated Approach” and the “Load Orientated Approach”.

Both approaches are necessary for verification purposes and both may be needed for providing the information required for the various commitments.

Guidelines 2,3,4,5 are mainly concerned with the sources estimation. They present a set of simple calculations that allow the estimation of the origin of loads. Guideline 6 is a particular case where the application of a model is advised, in order to estimate the sources of nutrients from diffuse sources associated with land use/land cover. The model chosen for this was SWAT (Arnold & Fohrer, 2005) model because it is suggested in the guideline 6 and because it's widely used in the world.

Watershed models can be characterized by the high number of processes associated simulated. The estimation of these processes is also data intensive, requiring data on topography, land use / land cover, agriculture practices, soil type, precipitation, temperature, relative humidity, wind and radiation.

Every year new data is being made available namely by satellite, that has allow to improve the quality of model input and also the calibration of the models (Galvão et. al, 2004b). Tools to cope with the vast amount of data have been developed: data formatting, data retrieving, data bases, metadata bases. The high number of processes simulated in watershed models makes them very wide in terms of output. The SWAT model outputs were modified to produce MOHID compliant result files (time series and HDF). These changes maintained the integrity of the original model, thus guarantying that results remain equal to the original version of SWAT. This allowed to output results in MOHID format, thus making it possible to immediately process it with MOHID visualization and data analysis tools (Chambel-Leitão et. al 2007; Trancoso et. al, 2009). Besides SWAT was modified to produce results files in HDF5 format, this allows the visualization of watershed properties (modeled by SWAT) in animated maps using MOHID GIS. The modified version of SWAT described here has been applied to various national and European projects. Results of the application of this modified version of SWAT to estimate hydrology and nutrients loads to estuaries and water bodies will be shown (Chambel-Leitão, 2008; Yarrow & Chambel-Leitão 2008; Chambel-Leitão et. al 2008; Yarrow & P. Chambel-Leitão, 2007; Yarrow & P. Chambel-Leitão, 2007; Coelho et. al., 2008).

Keywords: Watershed models, SWAT, MOHID LAND, Hydrology, Nutrient Loads

Arnold, J. G. and Fohrer, N. (2005). SWAT2000: current capabilities and research opportunities in applied watershed modeling. *Hydrol. Process.* 19, 563–572

Borgvang, S-A. & Selvik, J.S., 2000, eds. Development of HARP Guidelines – Harmonised Quantification and Reporting Procedure for Nutrients. SFT Report 1759/2000. ISBN 82-7655-401-6. 179 pp.

Chambel-Leitão P. (2008) Load and flow estimation: HARP-NUT guidelines and SWAT model description. In Perspectives on Integrated Coastal Zone Management in South America R Neves, J Baretta & M Mateus (eds.). IST Press, Lisbon, Portugal. (ISBN: 978-972-8469-74-0)

Chambel-Leitão P. Sampaio. A., Almeida, P. (2008) Load and flow estimation in Santos watersheds. In Perspectives on Integrated Coastal Zone Management in South America R Neves, J Baretta & M Mateus (eds.). IST Press, Lisbon, Portugal. (ISBN: 978-972-8469-74-0)

Chambel-Leitão P., F. Braunschweig, L. Fernandes, R. Neves, P. Galvão. (2007) Integration of MOHID model and tools with SWAT model, submitted to the Proceedings of the, 4th International SWAT Conference, July 2-6 2007.

Coelho H., Silva A., P. Chambel-Leitão, Obermann M. (2008) On The Origin Of Cyanobacteria Blooms In The Enxoé Reservoir. 13th World Water Congress, Montpellier, France

Galvão P., Chambel-Leitão, P., P. Leitão, R. Neves. (2004a) A different approach to the modified Picard method for water flow in variably saturated media. Computational Methods in Water Resources. Chapel Hill, North Carolina USA

Galvão P., Neves R., Silva A., Chambel-Leitão P. & F. Braunschweig (2004b) Integrated Watershed Modeling. Proceedings of MERIS User Workshop ESA-ESRIN, Frascati, Italy May 2004.

Neves R., Galvao P., Braunschewig F. Chambel-Leitão P. (2007) New Approaches to Integrated Watershed Modeling. Proceedings of SPS (NFA) 5th Workshop on Sustainable Use And Development Of Watersheds For Human Security And Peace October 22-26, 2007 Istanbul, TURKEY

Schoumans, O.F. & Silgram, M. (eds.), 2003. Review and literature evaluation of Quantification Tools for the assessment of nutrient losses at catchment scale. EUROHARP report 1-2003, NIVA report SNO 4739-2003, ISBN 82-557-4411-5

Trancoso, R., F. Braunschweig, Chambel-Leitão P., Neves, R., Obermann, M. (2009) An advanced modelling tool for simulating complex river systems. Accepted for publication in Journal of Total Environment.

Yarrow M., Chambel-Leitão P. (2006) Calibration of the SWAT model to the Aysén basin of the Chilean Patagonia: Challenges and Lessons. Proceedings of the Watershed Management to Meet Water Quality Standards and TMDLS (Total Maximum Daily Load) 10-14 March 2007, San Antonio, Texas 701P0207.

Yarrow M., Chambel-Leitão P.. (2007) Simulating Nothfagus forests in the Chilean Patagonia: a test and analysis of tree growth and nutrient cycling in swat. Submitted to the Proceedings of the , 4th International SWAT Conference July 2-6 2007.

Yarrow, M., Chambel-Leitão P. (2008) Estimation of loads in the Aysén Basin of the Chilean Patagonia: SWAT model and Harp-Nut guidelines. In Perspectives on Integrated Coastal Zone Management in South America R Neves, J Baretta & M Mateus (eds.). IST Press, Lisbon, Portugal. (ISBN: 978-972-8469-74-0)