

Estimating parameters for stable processes in climate time series via power variations

C. Hein (1), P. Imkeller (2), and I. Pavlyukevich (3)

(1) Humboldt-Universität zu Berlin, Germany (heinc@mathematik.hu-berlin.de), (2) Humboldt-Universität zu Berlin, Germany (imkeller@mathematik.hu-berlin.de), (3) Humboldt-Universität zu Berlin, Germany (pavljuke@mathematik.hu-berlin.de)

We provide a method to analyse a paleoclimatic temperature time series from a Greenland ice-core covering the period of the last 100.000 years. In 1999 P. Ditlevsen proposed to model it as a stochastic differential equation

$$X_t^\varepsilon = x_0 - \int_0^t U'(X_s^\varepsilon) ds + \varepsilon L_t$$

with $\varepsilon > 0$ and U being a double well potential. He also conjectured that the random forcing has a strong non-Gaussian, heavy-tailed component α -stable component. As the stability index alpha completely determines the dynamics of X , one is interested in effective estimation of this value from given time series.

With the help of non-standard limit theorems for the the so-called power variations of L and X we develop a method to estimate the stability index α and the amplitude parameter ε without imposing additional assumptions on the shape of U .