

Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect

J. E. Kristjánsson (1), C. Hoose (1), A. Kirkevåg (2), T. Iversen (2), Ø. Seland (2), and A. Gettelman (3)

(1) University of Oslo, Department of Geosciences, Oslo, Norway (j.e.kristjansson@geo.uio.no, +47 228 55269), (2) Norwegian Meteorological Institute, Oslo, Norway, (3) National Center for Atmospheric Research, Boulder, Colorado, US

Over the last decade, aerosol-climate models have evolved to include more and more sophisticated aerosol and cloud microphysics schemes. With a prognostic treatment of aerosol number concentration and a continuity equation for cloud droplets, very low values for the droplet concentration can occur, which are not considered realistic. To avoid this, several state-of-the-art GCMs constrain the droplet concentration such that it can not fall below a certain minimum value inside a cloud or impose lower bounds for aerosol concentration. While it can be argued that natural background aerosol particles (e.g. non-desert dust or bioaerosols) are missing in most GCMs and therefore the simulated concentrations are too low, observed cloud droplet concentrations can actually fall below 30 cm^{-3} in the remote oceans or even below 15 cm^{-3} in the Arctic. This suggests that lower bounds are problematic, especially for clean preindustrial conditions.

It has been shown previously (Lohmann et al, 2000: JGR; Wang & Penner, 2008: ACPD) that this constraint has the side effect of reducing the simulated aerosol indirect effect. Here we investigate this effect systematically with the CAM-Oslo GCM (Storelvmo et al, 2006: JGR; Seland et al, 2008: Tellus). Setting the lower bound for the cloud droplet concentration to 0, 1, 10, 20 and 40 cm^{-3} results in changes of the shortwave cloud forcing between present-day and preindustrial conditions which range from -1.9 Wm^{-2} (without a lower bound) to -0.6 Wm^{-2} (lower bound of 40 cm^{-3}). A similar effect is found if the cloud droplet concentration is treated diagnostically, for which case the results range from -2.4 Wm^{-2} (lower bound of 1 cm^{-3}) to -0.8 Wm^{-2} (lower bound of 40 cm^{-3}). We will discuss these simulations and the implications of our findings.