

A novel technique for high-precision analysis of triple oxygen isotope ratios in carbon dioxide

M. Hofmann and A. Pack

University of Göttingen, Germany (magdalena.hofmann@stud.uni-goettingen.de)

Precise measurement of triple oxygen isotope ratios in carbon dioxide is a promising tool in tracing interactions between the troposphere and the biosphere. Thus, exact triple oxygen isotope determination of tropospheric CO₂ might play a major role in improving geochemical modelling of terrestrial gross carbon fluxes [1]. Even though major progress in analysing triple oxygen isotope ratios in carbon dioxide has been made [2-4], the uncertainties in $\delta^{17}\text{O}$ analysis remain too large to reveal the predicted slight variations of tropospheric CO₂ from the terrestrial fractionation line [1]. Assonov and Brenninkmeijer [2] showed that the triple oxygen isotope composition of CO₂ can be inferred from CO₂-CeO₂ exchange experiments due to the very high oxygen diffusion rates of ceria. They showed that the triple oxygen isotope composition can be deduced by comparing the mass ratios 45/44 and 46/44 of the sample CO₂ before and after equilibration with ceria. In order to enhance precision, we analysed the equilibrated ceria instead of CO₂. We also investigated the temperature dependency of the CO₂-CeO₂ equilibrium fractionation factor.

CO₂-CeO₂ isotope exchange experiments were carried out at temperatures between 600°C and 900°C for 0.5 h to 3 h. The molar CO₂-CeO₂ ratio in the exchange system is greater than 100. $\delta^{18}\text{O}$ analyses of CO₂ before and after equilibration show that the influence of CeO₂ oxygen on the isotopic composition of the bulk system is negligible. After isotopic equilibration with CO₂, the triple oxygen isotope composition of ceria is analysed on a Thermo MAT 253 gas mass spectrometer by IR-laser fluorination. After determination of the fractionation factor between CO₂ and ceria, the triple oxygen composition of the sample CO₂ can be inferred from the isotopic composition of the equilibrated ceria. In order to calibrate the procedure, CO₂ with a known $\delta^{17}\text{O}$ value is prepared via quantitative conversion of O₂ to CO₂ by combustion of carbon. Terrestrial rocks and minerals with varying $\delta^{18}\text{O}$ values are analysed defining the terrestrial fractionation line (TFL). Thus, oxygen isotope anomaly of CO₂ can be expressed as $\Delta^{17}\text{O}_{\text{CO}_2} = (\beta_{\text{TFL}} - \beta_{\text{CO}_2-\text{CeO}_2}) \times \Delta^{18}\text{O}_{\text{CO}_2-\text{CeO}_2} + \Delta^{17}\text{O}_{\text{CeO}_2}$.

Analysis of rocks and minerals (N = 126) defines the slope of the TFL (β_{TFL}) as 0.5247. $\beta_{\text{CO}_2-\text{CeO}_2}$ accounts for the triple oxygen equilibrium fractionation between equilibrated ceria and CO₂. Experimental determination of $\beta_{\text{CO}_2-\text{CeO}_2}$ requires equilibration of ceria and CO₂ with known $\delta^{17}\text{O}$ abundance. This parameter has not been determined yet, but it will be presented at the conference. $\Delta^{18}\text{O}_{\text{CO}_2-\text{CeO}_2}$ accounts for the equilibrium fractionation between CO₂ and CeO₂. Isotopic exchange between CO₂ and CeO₂ is temperature dependent resulting in an equilibrium fractionation factor $1000 \times \ln \alpha_{\text{CO}_2-\text{CeO}_2}$ of 15.04 ± 0.06 (1 σ), 12.69 ± 0.10 (1 σ) and 11.63 ± 0.10 (1 σ) at 600°C, 700°C and 900°C respectively. $\Delta^{17}\text{O}_{\text{CeO}_2}$ describes the deviation of equilibrated CeO₂ from the TFL. Our data show that the reproducibility of a single ceria analysis is $\pm 0.03\text{‰}$. Untreated ceria shows an oxygen isotope anomaly of $\Delta^{17}\text{O} = -0.20\text{‰} \pm 0.03$ (1 σ). Equilibration of ceria with ordinary technical CO₂ ($\delta^{18}\text{O} = 15.2\text{‰}$) gives $\Delta^{17}\text{O}_{\text{CeO}_2}$ values of $0.04\text{‰} \pm 0.04$ (1 σ), $0.07\text{‰} \pm 0.06$ (1 σ) and $0.14\text{‰} \pm 0.10$ (1 σ) at 600°C, 700°C and 900°C respectively. Taking all available data into account, $\Delta^{17}\text{O}_{\text{CO}_2}$ is likely to be determined with a precision of approximately 0.05‰ of a single experiment.

Our data confirm that ceria is an excellent oxygen-exchange medium in CO₂ exchange experiments and that full equilibrium is reached after a short period of time of 0.5 h to 3 h at temperatures ranging between 600°C and 900°C. Our technique can also be used to determine equilibrium fractionation factors between other oxygen-bearing gaseous components (e.g. CO₂-O₂) via equilibration with CeO₂. Most importantly, our data suggest that direct measurement of equilibrated ceria is a suitable tool to precisely determine $\Delta^{17}\text{O}$ variations of CO₂. This new analytical technique is accurate and straightforward. It opens up a new field for investigating the triple oxygen

composition of various types of atmospheric CO₂. These data will be acquired in the course of the ongoing project.

References:

- [1] Hoag, K.J. et al., **Geophysical Research Letters**, 2005. 32(L02802): p. 1-5.
- [2] Assonov, S.S. and C.A.M. Brenninkmeijer, **Rapid Communications in Mass Spectrometry**, 2001. 15: p. 2426-2437.
- [3] Brenninkmeijer, C.A.M. and T. Röckmann, **Rapid Communications in Mass Spectrometry**, 1998. 12: p. 479-483.
- [4] Thiemens, M.H. and T. Jackson, **Geophysical Research Letters**, 1991. 18: p. 669-672.