

Stratospheric hydrogen peroxide (H₂O₂): Comparison between MIPAS observations and KASIMA model results with focus on the SPE 2003

S. Versick and the IMK ASF SPE Team

Institut fuer Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
(stefan.versick@imk.fzk.de)

H, OH and HO₂ (collectively called HO_x) are fast-reacting radicals in the middle atmosphere. These radicals are efficient catalysts for destroying ozone and play an important role in atmospheric chemistry. An important reservoir gas for HO_x is Hydrogen Peroxide (H₂O₂). For all these important species at the moment only few measurements exist, e.g. in-situ measurements in the troposphere, balloon and rocket measurements, few HO_x measurements by aircraft, and global satellite measurements of OH and HO₂ by Aura/MLS since 2005. We present results for H₂O₂ for global day and night measurements with the MIPAS instrument on the ESA satellite ENVISAT.

We find a strong annual cycle with high values for H₂O₂ in polar summer consistent with the strong coupling to HO_x chemistry.

We investigated in more detail the Solar Proton Event (SPE) that occurred in October/November 2003. During SPEs, precipitation of energetic protons into the polar atmosphere produces ions in the middle atmosphere which form, partly via ion-cluster-reactions, odd hydrogen (HO_x) and odd nitrogen (NO_x). Increased levels of HO_x and NO_x, in turn, depletes the ozone in the polar stratosphere and mesosphere. We present the results of our retrievals of H₂O₂ for this event and compare the observations with results of the KASIMA model which has been upgraded to handle the ionization of the atmosphere due to the SPE and subsequent chemical reactions due to the NO_x/HO_x enhancements.