

Environmental characterisation of a major radioxenon source in Europe

P.R.J. Saey (1), A. Ringbom (2), A. Becker (1), J. Camps (3), N. Paquet (4), M. Sonck (5), T. Taffary (6), K. van der Meer (3), B. Verboomen (4), M. Zähringer (1), and the FOI Measurement Team

(1) Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO), Provisional Technical Secretariat, PO Box 1200, 1400 Vienna, Austria (paul.saey@ctbto.org), (2) Swedish Defence Research Agency (FOI), Division for Defence and Security, Systems and Technology, 172 90 Stockholm, Sweden, (3) Belgian Nuclear Research Centre (SCK-CEN), Institute for Environment, Health and Safety, Boeretang 200, 2400 Mol, Belgium, (4) National Institute for Radioelements (IRE), Internal Service for Prevention and Protection, Avenue de l'Espérance 1, 6220 Fleurus, Belgium, (5) Belgian Federal Agency for Nuclear Control (FANC-AFCN), Department of Control and Supervision of the Territory, Ravensteinstraat 36, 1000 Brussel, Belgium, (6) Commissariat à l'Energie Atomique (CEA), Département Analyse Surveillance Environnement, BP 12, 91680 Bruyères-le-Châtel, France

Abstract

In the framework of the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) the atmospheric background of environmental radioxenon has been studied. It was recently shown that radiopharmaceutical facilities (RPF) have a major contribution to the general background of ^{133}Xe and other xenon isotopes both in the northern and southern hemisphere. The daily International Monitoring System (IMS) noble gas measurements around the globe are influenced from such anthropogenic sources that could hide relevant radioxenon signals.

To distinguish a nuclear explosion from releases from civil nuclear facilities, not only the activity concentration but also the ratio of different radioxenon isotopes (^{131m}Xe , ^{133m}Xe , ^{133}Xe and ^{135}Xe) plays a crucial role, since the ratios can be used to discriminate source types.

Theoretical release and ratio studies were recently published, but no high-sensitive measurements in and close to radiopharmaceutical facilities have ever been performed.

During the summer of 2008, a three week field campaign was carried out in the region around the Belgian radiopharmaceutical facility IRE in Fleurus, the world third largest one. The scope was to obtain the activity concentration of the releases and the isotopic composition. Two 6-hour noble gas measurements, using mobile SAUNA sampling equipment were collected each day at different distances from the facility (1 – 100 km). The sampling locations were guided by atmospheric dispersion model results. Three samples from the stack itself were also collected. All 38 samples were shipped after collection to and measured with a SAUNA at the laboratory in Stockholm, Sweden.

The environmental concentrations of ^{133}Xe were measured and found to be in the range between $0.7 - 4 \cdot 10^5$ mBq/m³. Nine samples contained all four CTBT relevant radioxenon isotopes. The concentrations of the stack spike samples were in the range $2 \cdot 10^9 - 4 \cdot 10^{10}$ mBq/m³. This corresponds to a daily release of around 1 TBq. This is consistent with literature and is well below exposure guidelines and therefore not dangerous to the public, but high enough to increase radioxenon background in wide regions around such facilities especially given the high sensitivity of the CTBT monitoring systems.

In a simple model the measured concentrations are fitted versus the distance from IRE and the resulting source term agrees reasonably well with the concentration of the measured stack samples.

This paper further compares the environmental field measurements made with reported stack releases from the facility, with measurements from the Belgian national Telerad network as well with long distance measurements at the Schauinsland Mountain near Freiburg, Germany and at Bruyères-le-Châtel, near Paris, France.

Disclaimer

The views expressed in this publication are those of the authors and do not necessarily reflect the views of the CTBTO Preparatory Commission or any of the institutions mentioned herein.

Acknowledgement

This project is performed in the framework of European Council Joint Action no. 2007/468/CFSP on support for activities of the Preparatory Commission of the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) monitoring and verification capabilities in the framework of the implementation of the European Union Strategy against Proliferation of Weapons of Mass Destruction.