

Investigation of small scale roughness properties of Martian terrains using Mars Reconnaissance Orbiter data.

A.B. Ivanov (1,2) and A. Rossi (3)

(1) Planetary Science Institute, United States (anton@psi.edu), (2) Ecole Polytechnique fédérale de Lausanne, Switzerland, (3) International Space Science Institute (ISSI), Bern, Switzerland

Studies of layered terrains in polar regions as well as inside craters and other areas on Mars often require knowledge of local topography at much finer resolution than global MOLA topography allows. For example, in the polar layered deposits spatial relationships are important to understand unconformities that are observed on the edges of the layered terrains [15,3]. Their formation process is not understood at this point, yet fine scale topography, joint with ground penetrating radar like SHARAD and MARSIS may shed light on their 3D structure. Landing site analysis also requires knowledge of local slopes and roughness at scales from 1 to 10 m [1,2]. Mars Orbiter Camera [13] has taken stereo images at these scales, however interpretation was difficult due to unstable behavior of the Mars Global Surveyor spacecraft during image take (wobbling effect). Mars Reconnaissance Orbiter (MRO) is much better stabilized, since it is required for optimal operation of its high resolution camera.

In this work we have utilized data from MRO sensors (CTX camera [11] and HIRISE camera [12] in order to derive digital elevation models (DEM) from images targeted as stereo pairs. We employed methods and approaches utilized for the Mars Orbiter Camera (MOC) stereo data [4,5]. CTX data varies in resolution and stereo pairs analyzed in this work can be derived at approximately 10m scale. HIRISE images allow DEM post spacing at around 1 meter. The latter are very big images and our computer infrastructure was only able to process either reduced resolution images, covering larger surface or working with smaller patches at the original resolution.

We employed stereo matching technique described in [5,9], in conjunction with radiometric and geometric image processing in ISIS3 [16]. This technique is capable of deriving tiepoint co-registration at subpixel precision and has proven itself when used for Pathfinder and MER operations [8]. Considerable part of this work was to accommodate CTX and HIRISE image processing in the existing data processing pipeline and improve it at the same time. Currently the workflow is not finished: DEM units are relative and are not in elevation.

We have been able to derive successful DEMs from CTX data Becquerel [14] and Crommelin craters as well as for some areas in the North Polar Layered Terrain. Due to its tremendous resolution HIRISE data showing great surface detail, hence allowing better correlation than other sensors considered in this work. In all cases DEM were showing considerable potential for exploration of terrain characteristics. Next steps include cross validation results with DEM produced by other teams and sensors (HRSC [6], HIRISE [7]) and providing elevation in terms of absolute height over a MOLA areoid.

MRO imaging data allows us an unprecedented look at Martian terrain. This work provides a step forward derivation of DEM from HIRISE and CTX datasets and currently undergoing validation vs. other existing datasets. We will present our latest results for layering structures in both North and South Polar Layered deposits as well as layered structures inside Becquerel and Crommelin craters. Digital Elevation models derived from the CTX sensor can also be utilized effectively as a input for clutter reduction models, which are in turn used for the ground penetrating SHARAD instrument [13].

References.

- [1] R. Arvidson, et al. Mars exploration program 2007 phoenix landing site selection and characteristics. *Journal of Geophysical Research-Planets*, 113, JUN 19 2008.
- [2] M. Golombek, et al. Assessment of mars exploration rover landing site predictions. *Nature*, 436(7047):44–48,

JUL 7 2005.

- [3] K. E. Herkenhoff, et al. Meter-scale morphology of the north polar region of mars. *Science*, 317(5845):1711–1715, SEP 21 2007.
- [4] A. B. Ivanov. Ten-Meter Scale Topography and Roughness of Mars Exploration Rovers Landing Sites and Martian Polar Regions. volume 34 of *Lunar and Planetary Inst. Technical Report*, pages 2084–+, Mar. 2003.
- [5] A. B. Ivanov and J. J. Lorre. Analysis of Mars Orbiter Camera Stereo Pairs. In *Lunar and Planetary Institute Conference Abstracts*, volume 33 of *Lunar and Planetary Inst. Technical Report*, pages 1845–+, Mar. 2002.
- [6] R. Jaumann, et al. The high-resolution stereo camera (HRSC) experiment on mars express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. *Planetary and Space Science*, 55(7-8):928–952, MAY 2007.
- [7] R. L. Kirk, et al. Ultrahigh resolution topographic mapping of mars with MRO HIRISE stereo images: Meter-scale slopes of candidate phoenix landing sites. *Journal of Geophysical Research-Planets*, 113, NOV 15 2008.
- [8] S. Lavoie, et al. Processing and analysis of mars pathfinder science data at the jet propulsion laboratory's science data processing systems section. *Journal of Geophysical Research-Planets*, 104(E4):8831–8852, APR 25 1999.
- [9] J. J. Lorre, et al. Recent developments at JPL in the application of image processing to astronomy. In D. L. Crawford, editor, *Instrumentation in Astronomy III*, volume 172 of *Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series*, pages 394–402, 1979.
- [10] M. Malin, et al. Early views of the martian surface from the mars orbiter camera of mars global surveyor. *Science*, 279(5357):1681–1685, MAR 13 1998.
- [11] M. C. Malin, et al. Context camera investigation on board the mars reconnaissance orbiter. *Journal of Geophysical Research-Planets*, 112(E5), MAY 18 2007.
- [12] A. S. McEwen, et al.. Mars reconnaissance orbiter's high resolution imaging science experiment (HIRISE). *Journal of Geophysical Research-Planets*, 112(E5), MAY 17 2007.
- [13] A. Rossi, et al. Multi-spacecraft synergy with MEX HRSC and MRO SHARAD: Light-Toned Deposits in crater bulges. *AGU Fall Meeting Abstracts*, pages B1371+, Dec. 2008.
- [14] A. P. Rossi, et al. Stratigraphic architecture and structural control on sediment emplacement in Becquerel crater (Mars). volume 40. *Lunar and Planetary Science Institute*, 2009.
- [15] K. L. Tanaka, et al. North polar region of mars: Advances in stratigraphy, structure, and erosional modification, AUG 2008. *Icarus*.
- [16] USGS. Planetary image processing software: ISIS3. <http://isis.astrogeology.usgs.gov/>