

A multiproxy study of Holocene water-depth and environmental changes in Lake St Ana, Eastern Carpathian Mountains, Romania

E. K. Magyari (1), K. Buczkó (2), M. Braun (3), and G. Jakab (4)

(1) 1MTA-MTM Palaeoenthological Research Group, Hungarian Natural History Museum, 1476 Budapest, P.O. Box 222, Hungary (magyari@bot.nhmus.hu), (2) Hungarian Natural History Museum, Department of Botany, 1476 Budapest, P.O. Box 222, Hungary (buczko@bot.nhmus.hu), (3) University of Debrecen, Department of Inorganic and Analytical Chemistry, H-4010 Debrecen, P.O. Box 21, Hungary (braun@tigris.unideb.hu), (4) Tessedik Sámuel College, Institute of Environmental Sciences, 5540 Szarvas, Szabadság út 1-3., Hungary (cembra@freemail.hu)

This study presents the results of a multi-disciplinary investigation carried out on the sediment of a crater lake (Lake Saint Ana, 950 m a.s.l.) from the Eastern Carpathian Mountains. The lake is set in a base-poor volcanic environment with oligotrophic and slightly acidic water. Loss-on-ignition, major and trace element, pollen, plant macrofossil and siliceous algae analyses were used to reconstruct Holocene environmental and water-depth changes.

Diatom-based transfer functions were applied to estimate the lake's trophic status and pH, while reconstruction of the water-depth changes was based on the plant macrofossil and diatom records. The lowest Holocene water-depths were found between 9,000 and 7,400 calibrated BP years, when the crater was occupied by Sphagnum-bog and bog-pools. The major trend from 7,400 years BP was a gradual increase, but the basin was still dominated by poor-fen and poor fen-pools. Significant increases in water-depth, and meso/oligotrophic lake conditions were found from 5,350(1), 3,300(2) and 2,700 years BP. Of these, the first two coincided with major terrestrial vegetation changes, namely the establishment of *Carpinus betulus* on the crater slope (1), and the replacement of the lakeshore *Picea abies* forest by *Fagus sylvatica* (2). The chemical record clearly indicated significant soil changes along with the canopy changes (from coniferous to deciduous), that in turn led to increased in-lake productivity and pH. A further increase in water-depth around 2,700 years BP resulted in stable thermal stratification and hypolimnetic anoxia that via P-release further increased in-lake productivity and eventually led to phytoplankton blooms with large populations of *Scenedesmus* cf. *S. brasiliensis*. High productivity was depressed by anthropogenic lakeshore forest clearances commencing from ca. 1,000 years BP that led to the re-establishment of *Picea abies* on the lakeshore and consequent acidification of the lake-water. On the whole, these data allow the following main inference to be made: Lake Saint Ana is a vulnerable ecosystem; hydrological, biological and chemical processes in the lake are heavily influenced by the lakeshore forest and the soil underlying it. In-lake productivity is higher under deciduous canopy and litter, and considerably repressed by coniferous canopy and litter. The lake today subsists in a managed environment, that is however far from its natural state. This would be a dense *Fagus sylvatica* forest supplying more nutrients and keeping up a more productive in-lake flora and fauna. An overview of the regional Holocene lake-level records suggests that the general lake-level trends of this study agree with other records in the region, except for the lat 2,700 years, for which conflicting trends were found. The pollen based palaeo-precipitation record in NW Romania signals lower precipitation, while our, and some other records, signal significant increase in available moisture. Further studies are needed to resolve this problem.