Geophysical Research Abstracts, Vol. 11, EGU2009-9992, 2009 EGU General Assembly 2009 © Author(s) 2009

Error structure in simulated and measured snow cover information

S. Kolberg and K. Engeland

SINTEF Energy Research, Energy Systems, Trondheim, Norway (Sjur.Kolberg@sintef.no, 47 73947250)

The use of satellite data in calibration and updating of snow cover models require an assessment of the error structure in order to assimilate the remotely sensed information with other types of data. In particular for grid distributed models, the spatial covariance needs to be modelled in order to avoid over-conditioning on the potentially very high nominal number of measurements.

It is shown that use of the Normalised Difference Snow Index (NDSI) directly as the interface variable, rather than re-scaling and truncating to fractional snow covered area (SCA), facilitates the use of a Normal error model, and removes the most dramatic heteroscedasticity. The dependency of simulated and measurement errors on forest cover, elevation and terrain exposure is analysed, as is the spatio-temporal correlation structure of these errors.

Table 1 summarises the most important reasons why an assumption of independent errors (like when multiplying single-observation likelihood terms) is likely to cause over-conditioning. An alternative error model attempting to provide a more realistic assessment of the information content in the data is proposed.

Table 1: Imperfections degrading the performance of a simple multiplicative error model. Spatial connectivity of terrain attributes also yields spatially correlated errors.

Redundancy source	Measured values	Simulated values
Spatial	Imperfect atmospheric	Errors in the snow storage or melt depth
autocorrelation	correction (image specific)	GMRF surfaces
		Bias in elevation gadients
Temporal	Temporally stable (but spatially het-	Biased melt rate
autocorrelation	erogeneous) bare ground reflectance	Albedo-melt feedback
		Non-Gamma distribution
		Sub-grid heterogeneous melt
Correlation with	Heterogeneous snow reflectance (fresh	Biased elevation gradient in storage or
terrain attributes	/ ripe snow)	melt depth.
	Heterogenous illumination	Errors in albedo or radiation simula-
	Varying forest cover	tions
Heteroscedasticity	Varying NDSI sensitivity to snow and	Varying SCA sensitivity to melt depth
	bare ground reflectance	Deviation from NDSI-SCA transforma-
		tion model