

High Resolution Photoabsorption Cross-Sections of Isotopologues of SO₂

Douglas Blackie (1), Glenn Stark (2), James Lyons (3), Juliet Pickering (1), Peter Smith (4), and Anne Thorne (1)
(1) Imperial College, Space and Atmospheric physics, London, United Kingdom (douglas.blackie01@imperial.ac.uk), (2)
Department of Physics, Wellesley College, Wellesley, MA 02481, USA, (3) Institute of Geophysics and Planetary Physics and
Department of Earth and Space Sciences, University of California, Los Angeles, California, USA, (4) Harvard-Smithsonian
Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

The timing of the oxygenation of the Earth's atmosphere is a central issue in understanding the Earth's paleoclimate. The discovery of mass-independent fractionation (MIF) of sulphur isotopes deposited within Archean and Paleoproterozoic rock samples has given rise to a possible marker, through the transition between MIF within older rock samples (> 2.4 Gyrs) to mass-dependent fractionation (MDF) within younger samples, for the rise in oxygen concentrations within the Earth's atmosphere [Farquhar, 2003].

Laboratory experiments [Farquhar, 2001][Pen, 2008] suggest isotopic self shielding during the gas phase photolysis as the dominant mechanism for MIF. Self shielding is present for SO₂ at wavelengths shorter than 220 nm where it undergoes partial predissociation. The UV absorption of SO₂ is dominated by the $\tilde{C}^1\text{B}_2$ - $\tilde{X}^1\text{A}_1$ electronic system which comprises of strong vibrational bands extending from 170 - 230 nm. Within an atmosphere consisting of low O₂ and O₃ concentrations, such as that predicted for the early Earth, UV radiation would penetrate deep into the ancient Earth's atmosphere within the 180 - 220 nm range driving the photolysis of SO₂.

We have conducted the first ever high resolution measurements of the photo absorption cross sections of several isotopologues of SO₂, namely ³²SO₂, ³³SO₂, ³⁴SO₂ and ³⁶SO₂. The cross sections are being measured at Imperial College at initial resolutions of 1.0 cm⁻¹ which will be increased to resolutions < 0.5 cm⁻¹ for inclusion in photochemical models of the early Earth's atmosphere. The models will be used to more reliably interpret the sulphur isotope ratios found within ancient rock samples [Lyons, 2007].

Initial 1.0 cm⁻¹ resolution measurements of several isotopologues of SO₂ will be presented in addition to preliminary < 0.5 cm⁻¹ photo absorption cross section measurements.