

Denitrification and N₂O emission in an N-saturated subtropical forest catchment, southwest China

Jing Zhu, Jan Mulder, and Peter Dörsch

Norwegian University of Life Sciences, Dept. of Plant and Environmental Sciences, Aas, Norway (jing.zhu@umb.no)

Increasing anthropogenic emissions of nitrogen have resulted in locally high deposition rates of reactive nitrogen in China (30-73 kg N ha⁻¹ a⁻¹; Zhang. et al., 2008), primarily as NO_x (from fossil fuel combustion) and NH₃ (from fertilizer production and animal husbandry). Due to the subtropical, monsoonal climate with high soil temperature and moisture in summer, forests in south China may be expected to show high nitrification and denitrification rates, both of which can cause high N₂O emissions.

To estimate the N₂O source strength and to investigate N-turnover processes relevant for N removal in subtropical forest, we investigated spatiotemporal patterns of N₂O emission along a hydrological flowpath from July to November of 2009 in the TSP catchment (Tieshanping), situated close to Chongqing, one of the biggest cities in southwest China.

Results from the first study year revealed high N cycling rates and N₂O emissions during the wet season, (June to September). Surprisingly, soils on the hill slopes showed higher denitrification potentials and N₂O emission rates than the wetter groundwater discharge zone at the bottom of the hill slopes. This was probably due to higher soil bulk density and less organic carbon content in the groundwater discharge zone. Highest denitrification potential were found in the O and A layer (< 5cm) of the hillslopes, suggesting that the organic carbon is the limiting factor for N-removal by denitrification in this ecosystem. High N-removal on the hill slopes was confirmed by decreasing NO₃⁻ concentrations along the flowpath during hydrologically stable conditions. However, high NO₃⁻ concentrations found in stream water during rain events suggest that the retention time of N in the catchment is too short to allow complete removal by denitrification. N₂O emission fluxes dropped by two orders of magnitude in the beginning of the dry season, reflecting lower N input and removal rates during winter. Our results show that denitrification and N₂O emission in upland soils is an important N sink in chronically N polluted subtropical forests.

Future studies are planned to confirm and further characterize denitrification as main N removal process in this ecosystem. ¹⁵N and ¹⁸O natural abundance of NO₃ as well as Ar:N₂ ratios will be analyzed along hydrological flowpaths and compared to in situ N₂O emissions and process rates. Apportionment of nitrification and denitrification in N₂O production will be studied in a ¹⁵N labeling experiment. N₂O product stoichiometry of nitrification and denitrification will be investigated in laboratory. Biological N-turnover together with hydrological modeling, constrained by mass balance approaches will be used to scale N removal to the landscape level.

Keywords: Denitrification, N₂O, watershed, subtropical forest, N-removal

References:

Zhang, W., Mo, J. M., Yu, G. R., Fang, Y. T., Li, D. J., Lu, X. K., et al. 2008. Emissions of nitrous oxide from three tropical forests in Southern China in response to simulated nitrogen deposition. *Plant Soil*, 306, 221-236