

The effect of nitrate addition on abundance of *nirK*, *nirS* and *gln* genes in acidified Norway spruce forest soil

Jiří Bárta (1), Karolina Tahovská (1), Jiří Kaňa (2), and Hana Šantrůčková (1)

(1) University of South Bohemia, Faculty of Science, Department of Ecosystem Biology, Branišovská 31, 37005 České Budějovice, Czech Republic (barta77@seznam.cz), (2) Biology Centre of the AS CR, v.v.i., Institute of Hydrobiology, Na Sádkách 7, 370 05 České Budějovice Czech Republic (jiri.kana@centrum.cz)

The denitrification is the main biotic process leading to losses of fixed nitrogen as well as removal of excess of nitrate (NO_3^-) from the soil environment. The reduction of NO_2^- to nitric oxide (NO) distinguishes the “true” denitrifiers from other nitrate-respiring bacteria. This reaction is catalyzed by two different types of nitrite reductases, either a cytochrome cd1 encoded by *nirS* gene (*nirS* denitrifiers) or a Cu-containing enzyme encoded by *nirK* gene (*nirK* denitrifiers). The *nirS* denitrifiers are located mostly in rhizosphere, while the *nirK* denitrifiers are more abundant in bulk soil. These two groups can be also classified as markers of denitrification.

Glutamine synthetase is one of the main bacterial NH_4^+ assimilating enzymes; it is coded by *glnI* gene. Glutamine synthetase is mostly active when N is the limiting factor for bacterial growth. There is recent evidence that the activity may be affected by the presence of alternative N source (i.e. NO_3^-). However, in anaerobic condition NO_3^- can be used also by the denitrifying bacteria so there may be strong competition for this nutrient.

The laboratory experiment was performed to evaluate the effect of nitrates (NO_3^-) on abundance of *nirK*, *nirS* and *gln* gene copy numbers. The amount of NO_3^- corresponded to the actual atmospheric depositions on experimental sites in the Bohemian Forest. Litter organic layer (0-5cm of soil) was used for laboratory incubation experiment. Four replicates of control (no addition of NO_3^-), and NO_3^- addition were incubated anaerobically for one month. After the incubation DNA was extracted and the number of *nirK*, *nirS* and *gln* gene copies was determined using qPCR (SYBRGreen methodology). Results showed that the addition of NO_3^- significantly increased the number of *nirK* and *nirS* denitrifiers from 5.9×10^6 to 1.1×10^7 and from not detectable amount to 1.4×10^6 , respectively. The *gln* gene copy number was also higher after NO_3^- addition. However, the difference was not statistically significant.