

Neogene Relief Development in the Western European Alps Revealed by Apatite (U-Th-Sm)/He and 4He/3He Thermochronometry.

Pierre G. Valla (1), David L. Shuster (2), Peter A. van der Beek (1), Frédéric Herman (3), and Jean Braun (1)

(1) Université Joseph Fourier, CNRS, Grenoble, France, (2) Berkeley Geochronology Center, Berkeley, CA, USA, (3) Geologisches Institut, ETH Zürich, Zürich, Switzerland

Neogene European Alps increase in both in-situ denudation rates and sediment fluxes to surrounding basins are suggested to have been caused by climatically-induced erosion pulse (Cederbom et al., 2004) and relief amplification due to Quaternary glaciations. However, these potential climatic controls, as well as the timing on denudation rates increase and/or relief development, are still debated as there are only few quantitative studies on topographic change during Pliocene-Quaternary times (Haeuselmann et al., 2007).

Here we present apatite (U-Th-Sm)/He data from vertical transects in the External Crystalline Massifs of the European Alps (Swiss Valais, Mont-Blanc area and Ecrins-Pelvoux massif). Previous thermochronology studies, employing apatite fission-track and (U-Th)/He data, have reported an increase pulse in denudation rates before ~ 5 Ma ago in these areas; however the very recent (i.e. last 2-3 Ma) topographic evolution and potential valley incision remain unconstrained by these data. We selected a subset of key samples from these profiles (Swiss Valais and Mont-Blanc) for which we applied a novel method based on 4He/3He thermochronometry and performed a random search algorithm to identify permissible thermal histories below ~ 80 °C. These thermal histories are compared to denudation and relief scenarios obtained from numerical inversion of our (U-Th-Sm)/He ages and previously published data using the 3D thermo-kinematic model Pecube.

For the samples near the top of the profile, 4He/3He results (Swiss Valais and Mont-Blanc) show rapid cooling before ~ 5 Ma followed by a quiescent phase with little cooling. This early cooling may be due to tectonically-controlled exhumation of the External Crystalline Massifs. Mid-profile and bottom samples only show very recent but significant cooling (~ 1 Ma). We suggest this late-stage cooling to be due to an episode of valley deepening related to the transition in climate variability (change in glacial/interglacial cycles amplitude and/or periodicity) in the European Alps. Further investigations in mountain belts using the 4He/3He thermochronometry is under way to more precisely constrain climatically- and/or tectonically-driven topography evolution. This presentation was supported by the EUROCORES programme TOPO-EUROPE of the European Science Foundation.