

CMAQ modeling of near-ground ozone pollution during the CAREBeijing-2006 campaign in Beijing, China

Xuesong Wang, Yu Song, Yuanhang Zhang, Min Hu, Limin Zeng, and Tong Zhu

State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China

The Community Multiscale Air Quality (CMAQ) modeling system, a 3-D regional chemical transport model, was used to simulate the O₃ episodes during the Campaign of Air Quality Research in Beijing and surrounding areas in 2006 (CAREBeijing-2006). The model reproduced the temporal and spatial variations of the observed ozone and precursors well during the campaign. The modeling results showed the evolution of near ground O₃ and the feature of vertical O₃ profile on pollution days with different meteorological conditions. Process analysis was applied to investigate the contributions of local production and regional transport, and found different relative importance at different locations of Beijing. O₃-NO_x-VOCs sensitivity was also addressed with different precursor emission scenarios. The Beijing downtown area and downwind urban plume were usually in VOC-limited regime, whereas the upwind regions and northern mountain areas were generally characterized by NO_x-sensitive chemistry. Ozone production efficiency of NO_x was also calculated based on simulation results and compared with that derived from observations. For reducing O₃ levels in Beijing, the above results suggest a regional emission control strategy with more emphasis on VOCs reduction in Beijing urban areas.