

Modeling Cenozoic Antarctic ice sheet variations with restored West Antarctic topography

David Pollard (1) and Robert DeConto (2)

(1) Pennsylvania State University, Earth and Environmental Systems Institute, University Park, Pennsylvania, United States (pollard@essc.psu.edu), (2) University of Massachusetts, Department of Geosciences, Amherst, Massachusetts, United States (deconto@geo.umass.edu)

The growth and subsequent variations of large-scale Antarctic ice cover across the Eocene-Oligocene transition is examined with a 3-D numerical ice-sheet/shelf model. Hysteresis between climate and ice volume is investigated, and whether ice volume can retreat significantly after the first threshold growth to full continental size; these questions are important given proxy data implying substantial sea-level variations through the late Oligocene and Miocene. Model results are compared using modern rebounded topography versus a restored West Antarctic topographic reconstruction at the Eocene-Oligocene boundary (D. Wilson and B. Luyendyk, 2009, *Geophys Res Lett*). We also describe the sensitivity to (i) horizontal resolution of the ice-sheet model, and (ii) climate forcing by GCM look-up table versus simple parameterizations.