

Isotope effect in the formation of H₂ from H₂CO studied at the atmospheric simulation chamber SAPHIR

Thomas Röckmann (1), Sylvia Walter (1), Franz Rohrer (2), and the SAPHIR Team

(1) Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht, Netherlands (t.roeckmann@uu.nl, +31-(0)30-2543163), (2) Institut für Chemie und Dynamik der Geosphäre ICG-2, Forschungszentrum Jülich GmbH, Jülich, Germany, (3) Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany

Formaldehyde of known, near-natural isotopic composition was photolyzed in a large photochemical reactor under ambient conditions. The isotopic composition of the product H₂ was used to determine the isotope effects in formaldehyde photolysis. The experiments are sensitive to the molecular photolysis channel, and the radical channel has only a second order effect and can thus not be derived with high precision. The molecular channel kinetic isotope effect, the ratio of photolysis frequencies $j(\text{HCHO} \rightarrow \text{CO} + \text{H}_2)/j(\text{HCDO} \rightarrow \text{CO} + \text{HD})$ under tropospheric conditions is determined to be $\text{KIE}_{\text{mol}}=1.63 \pm 0.03$. Combining this result with the total KIE from a recent relative rate experiment, it is likely that KIE_{mol} and KIE_{rad} are not as different as described previously in the literature.