

Continuum climate variability: Long-term memory, extremes, and predictability (Lewis Fry Richardson Medal Lecture)

Klaus Fraedrich

Universität Hamburg, KlimaCampus, Hamburg, Germany (klaus.fraedrich@zmaw.de)

Continuum temperature variability represents the response of the Earth's climate to deterministic external forcing. Scaling regimes are observed which range from hours to millennia with low frequency fluctuations characterizing long-term memory. The presence of 1/f power spectra in weather and climate is noteworthy: (i) In the tropical atmosphere 1/f scaling ranging from hours to weeks is found for several variables; it emerges as superposition of uncorrelated pulses with individual 1/f spectra. (ii) The daily discharge of the Yangtze shows 1/f within one week to one year, although the precipitation spectrum is white. (iii) Beyond one year mid-latitude sea surface temperatures reveal 1/f scaling in large parts of the global ocean. The spectra can be simulated by complex atmosphere-ocean general circulation models and understood as a two layer heat diffusion process forced by an uncorrelated stochastic atmospheric forcing. Long-term memory on time scales up to millennia are the global sea surface temperatures and the Greenland ice core records (GISP2, GRIP) with $\delta^{18}\text{O}$ temperature proxy data during the Holocene. Complex atmosphere ocean general circulation models reproduce this behaviour quantitatively up to millennia without solar variability, interacting land-ice and vegetation components.