

High plume excess temperatures in the lowermost mantle

Bernhard S. A. Schuberth and Hans-Peter Bunge

Ludwig-Maximilians-University Munich, Earth and Environmental Sciences, München, Germany
(bernhard@geophysik.uni-muenchen.de)

It is now widely recognised that there is a substantial heat flux through the CMB from the core into the mantle, up to 12 TW and significantly more than what was inferred earlier from observations of dynamic topography over mantle hotspots. A strong thermal gradient across the CMB is likely a source of large thermal anomalies in the form of hot upwelling plumes and correspondingly low seismic velocities in the lowermost mantle. Here we focus on temperature as a key parameter to constrain large-scale mantle structure and dynamics. We explore high-resolution mantle circulation models and predict their corresponding elastic heterogeneity. Absolute temperatures of our models are converted to seismic velocities using published thermodynamically self-consistent models of mantle mineralogy for a pyrolite composition. A grid spacing of about 25 km globally allows us to simulate mantle flow at earth-like convective vigor so that modelled temperature variations are consistent with the underlying mineralogy. We concentrate on isochemical convection and the relative importance of internal and bottom heating in order to isolate the thermal effects on elasticity. Importantly, models having a high temperature contrast on the order of 1000 K across the CMB produce elastic structures that are in excellent agreement with tomography for a number of quantitative measures: These include spectral power and histograms of heterogeneity as well as radial profiles of root-mean-square amplitudes. High plume excess temperatures of +1000–1500 K in the lowermost mantle are particularly important in understanding the strong velocity reductions mapped by seismic tomography in low-velocity bodies of the deep mantle, as they lead to significant negative anomalies of shear wave velocity of up to –4%. We note that our results do not account for the curious observation of seismic anti-correlation, which appears difficult to explain in any case and will require further improvements in the ability to map seismic heterogeneity to thermal and compositional variations. Our results underline the need to include mineral physics information in the geodynamic interpretation of tomographic models to obtain a better understanding of seismic images of mantle plumes.