

Risk assessment of soil compaction in Walloon Region (Belgium)

Rosiere Charlotte, Destain Marie-France, and Verbrugge Jean-Claude
GembloxAgro-Bio Tech, ULg, GembloxA, Belgium, crosiere@ulg.ac.be

The proposed Soil Framework Directive COM(2006)232 requires Member States to identify areas at risk of erosion, decline in organic matter, salinisation, compaction, sealing and landslides, as well as to set up an inventory of contaminated sites.

The present project aims to identify the susceptibility to compaction of soils of the Walloon Region (Belgium) and to recommend good farming practices avoiding soil compaction as far as possible.

Within this scope, the concept of precompression stress (P_c) (Horn and Fleige, 2003) was used. P_c is defined as the maximum major principal stress that a soil horizon can withstand against any applied external vertical stress. If applied stress is higher than P_c , the soil enters in a plastic state, not easily reversible. For a given soil, the intensity of soil compaction is mainly due to the applied load which depends on vehicle characteristics (axle load, tyre dimensions, tyre inflation pressure, and vehicle velocity).

To determine soil precompression stress, pedotransfert functions of Lebert and Horn (1991) defined at two water suctions (pF 1.8 and 2.5) were used. Parameters required by these functions were found within several databases (Aardewerk and Digital Map of Walloon Soils) and literature. The validation of P_c was performed by measuring stress-strain relationships using automatic oedometers. Stresses of 15.6, 31, 3, 62.5, 125, 250, 500 and 1000 kPa were applied for 10 min each.

In this study, the compaction due to beet harvester was considered because the axle load can exceed 10 tons and these machines are often used during wet conditions. The compaction at two depth levels was considered: 30 and 50 cm. Compaction of topsoil was not taken into account because, under conventional tillage, the plough depth is lower than 25 cm. Before and after the passage of the machines, following measurements were performed: granulometry, density, soil moisture, pF curve, Atterberg limits, ... The software Soilflex (Keller et al., 2007) was used to estimate the distribution of the vertical stresses $[U+F073]z$ in the soil. Comparison was performed between $[U+F073]z$ and P_c .

The following data simulated the passage of a beet harvester machine (mass: 23 580 kg; load: 18 000 kg) in a silty soil located in Hesbaye and classified as Aba (Sirjacobs et al., 2000). The passage of the machine would create a P_c of around 100 kPa at 30 cm depth, while the stress induced by the machine would reach 240 kPa. In the field borders, where more vehicle traffic was usually observed and where the soil was over consolidated, P_c would reach 180 kPa, while $[U+F073]z$ would be 220 kPa. In both cases, the risk of compaction created by the passage of the machine would be high.

- Lebert, M. and Horn, R. (1991). A method to predict the mechanical strength of agricultural soils. *Soil & Tillage Res.* 19, 275–286.
- Keller T., Défossez P., Weisskopf P., Arvidson J., Richard G. (2007). SoilFlex : A model for prediction of soil stresses and soil compaction due to agricultural field traffic including a synthesis of analytical approaches. *Soil & Tillage Research* 93, 391-411.
- Sirjacobs D., Hanquet B., Lebeau F., Destain M.-F. (2002). On-line mechanical resistance mapping and correlation with soil physical properties for precision agriculture. *Soil and Tillage Research*, 64, 231-242.