



## Last Glacial Maximum CO<sub>2</sub> and carbon-13 finally reconciled

Nathaelle Bouttes (1), Didier Paillard (1), Didier Roche (1), Victor Brovkin (2), and Laurent Bopp (1)

(1) IPSL / LSCE, CEA-CNRS-UVSQ, Gif-sur-Yvette, France (nathaelle.bouttes@lsce.ipsl.fr), (2) The Land in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany

During the Last Glacial Maximum (LGM, ~21,000 years ago) the cold climate was strongly tight to the low atmospheric CO<sub>2</sub> concentration (~190 ppm) that has been inferred from ice core bubbles [Monnin et al., 2001]. Although it is generally believed that this low CO<sub>2</sub> was due to an expansion of the oceanic carbon reservoir, simulating this glacial level has remained a challenge especially with the additional carbon-13 constraint. Indeed the LGM carbon cycle was also characterized by a modern-like  $\delta^{13}\text{C}$  in the atmosphere [Lourantou et al., 2009] and a higher surface to deep oceanic  $\delta^{13}\text{C}$  gradient [Curry and Oppo, 2005] indicating probable changes in the thermohaline circulation.

To create a larger carbon reservoir in the deep ocean, one possible mechanism is to produce very dense glacial waters thereby stratifying the deep ocean and reducing the carbon exchange between the deep and surface ocean. This mechanism has been tested with the implementation of a brine mechanism [Bouttes et al., 2009] in the intermediate complexity CLIMBER-2 model. This brine mechanism corresponds to the rapid sink to the deep ocean of the brines, i.e. very salty water rejected by sea ice formation.

Here we show that this brine induced stratification associated to carbonate compensation [Brovkin et al., 2007], iron fertilization and stratification dependant diffusion both decreases dramatically CO<sub>2</sub> down to the glacial value of ~190 ppm and provides the glacial carbon-13 inferred from proxy data. Thus LGM CO<sub>2</sub> and carbon-13 can at last be reconciled.

### References

Bouttes, N., D. Paillard, and D. M. Roche (2009), A dominant role of brine-induced stratification in low glacial CO<sub>2</sub>, Submitted to Global Biogeochem. Cycles.

Brovkin, V., A. Ganopolski, D. Archer, and S. Rahmstorf (2007), Lowering of glacial atmospheric CO<sub>2</sub> in response to changes in oceanic circulation and marine biogeochemistry, Paleoceanography, 22, PA4202, doi:10.1029/2006PA001380.

Curry, W. B. and D. W. Oppo (2005), Glacial water mass geometry and the distribution of  $^{13}\text{C}$  of CO<sub>2</sub> in the western Atlantic Ocean, Paleoceanography, 20, PA1017, doi:10.1029/2004PA001021.

Lourantou, A., J. V. Lavrič, P. Köhler, J.-M. Barnola, D. Paillard, E. Michel, D. Raynaud and J. Chappellaz (2009), New atmospheric carbon isotopic measurements constrain the CO<sub>2</sub> rise during the last deglaciation, Under revision at Global Biogeochem. Cycles.

Monnin, E., A. Indermühle, A. Daellenbach, J. Flueckiger, B. Stauffer, T. F. Stocker, D. Raynaud, and J.-M. Barnola (2001), Atmospheric CO<sub>2</sub> concentrations over the Last Glacial Termination, Science, 291, 112-114.