

The $^{238}\text{U}/^{235}\text{U}$ isotope ratio of the Earth and the solar system: Constraints from a gravimetrically calibrated U double spike and implications for absolute Pb-Pb ages

Stefan Weyer (1), Janine Noordmann (2), Greg Brennecka (3), and Stephan Richter (4)

(1) Institut fuer Geologie und Mineralogie, Universitaet zu Koeln, Germany (sweyer@uni-koeln.de), (2) Institut für Geowissenschaften, Goethe Universität, Frankfurt am Main 60438, Germany (J.Noordmann@em.uni-frankfurt.de), (3) School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, USA (brennecka@gmail.com), (4) Institute for Reference Materials and Measurements, JRC-EU, Retieseweg 111, 2440 Geel, Belgium (Stephan.RICHTER@ec.europa.eu)

The ratio of ^{238}U and ^{235}U , the two primordial U isotopes, has been assumed to be constant on Earth and in the solar system. The commonly accepted value for the $^{238}\text{U}/^{235}\text{U}$ ratio, which has been used in Pb-Pb dating for the last ~ 30 years, was 137.88. Within the last few years, it has been shown that 1) there are considerable U isotope variations ($\sim 1.3\%$) within terrestrial material produced by isotope fractionation during chemical reactions [1-3] and 2) there are even larger isotope variations (at least 3.5%) in calcium-aluminum-rich inclusions (CAIs) in meteorites that define the currently accepted age of the solar system [4]. These findings are dramatic for geochronology, as a known $^{238}\text{U}/^{235}\text{U}$ is a requirement for Pb-Pb dating, the most precise dating technique for absolute ages. As $^{238}\text{U}/^{235}\text{U}$ variations can greatly affect the reported absolute Pb-Pb age, understanding and accurately measuring variation of the $^{238}\text{U}/^{235}\text{U}$ ratio in various materials is critical. With these new findings, the questions also arise of "How well do we know the average U isotope composition of the Earth and the solar system?" and "How accurate can absolute Pb-Pb ages be?"

Our results using a gravimetrically calibrated $^{233}\text{U}/^{236}\text{U}$ double spike IRMM 3636 [5] indicate that the U standard NBL 950a, which was commonly used to define the accepted "natural" $^{238}\text{U}/^{235}\text{U}$ isotope ratio, has a slightly lower $^{238}\text{U}/^{235}\text{U}$ of 137.836 ± 0.024 . This value is indistinguishable from the U isotope compositions for NBL 960 and NBL112A, which have been determined by several laboratories, also using the newly calibrated U double spike IRMM 3636 [6]. These findings provide new implications about the average U isotope composition of the Earth and the solar system. Basalts display a very tight range of U isotope variations ($\sim 0.25\text{--}0.32\%$ relative to SRM 950a). Their U isotope composition is also very similar to that of chondrites [4], which however appear to show a slightly larger spread. Accepting terrestrial basalts to be the best representation of the U isotope composition of the Earth and the solar system, and the new $^{238}\text{U}/^{235}\text{U}$ for SRM 950a of 137.836, this would result in an average $^{238}\text{U}/^{235}\text{U}$ for the Earth and the solar system of ~ 137.80 . The effect of a revised $^{238}\text{U}/^{235}\text{U}$ ratio on Pb-Pb ages is age dependent. It results in an age overestimation of ~ 0.8 Ma for the age of the solar system and up to 1.5 Ma for very young material (with bulk Earth U isotope composition).

[1] Stirling, C.H., Andersen, M.B., Potter, E.-K., et al. (2007) EPSL 264, 208–225; [2] Weyer, S., Anbar, A. D., Gerdes, A., et al. (2008) GCA 72, 345–359. [3] Bopp, C.H., Lundstrom, C.C., Johnsons, T.M., Glessner, J.G. (2009) Geology 37, 611–614. [4] Brennecka, G.A., Weyer, S., Wadhwa, et al. (2010) Science, 327, p. 449. [5] Richter, S., Alonso-Munoz, A., Eykens, R., et al. (2008) IJMS 269, 145–148. [6] Richter, S., et al. EGU meeting 2010.