

Improving the accuracy of the SO₂ camera

Peter Lübcke, Christoph Kern, Leif Vogel, Felix Kick, Markus Wöhrbach, and Ulrich Platt

Institute of Environmental Physics, University of Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
(pluebcke@iup.uni-heidelberg.de)

The SO₂ Camera is a novel technique to measure column densities and fluxes of SO₂ emitted by volcanoes using solar radiation scattered in the atmosphere as a light source. The instrument is based on two interference band-pass filters and a UV-sensitive CCD sensor.

A filter centered around 315 nm is used to measure the optical density of SO₂ in the plume, whereas a second filter, centered around 330 nm, corrects the effects of aerosol scattering and therefore makes the technique applicable to volcanic plumes containing aerosols. The ability to deliver spatially resolved images of volcanic SO₂ distributions at a frame rate of the order of 1 Hz makes the SO₂ camera a very promising technique for monitoring the evolution of volcanic plumes, the quantitative determination of SO₂ emissions and flux measurements.

This poster explains the measurement principle and how to evaluate data measured with the SO₂camera. Several issues that can influence the measurement are addressed. For one, the change in light path through the stratosphere with changing solar zenith angle changes the spectral distribution measured on the earth's surface. As the absorption of SO₂ is highly dependent on the wavelength of light, these changes can influence the measured column densities. Secondly, as the camera uses scattered solar radiation as a light source, we have to take radiative transfer effects in account. The path between the sun and the instrument is not fixed, as effects like multiple scattering or 'radiative dilution' can occur and lead to an underestimation or overestimation of the SO₂ column density. Recommendations for correcting the individual effects during data analysis are given.

Aside from the above-mentioned intrinsic effects, there are several choices in the technical setup of the SO₂ camera which are discussed. A general description of the instrument's set-up and the camera control software are given. Finally, several measurement examples are shown and possibilities to combine SO₂ camera measurements with other remote sensing techniques are explored. For example, a co-located DOAS system was used to accurately calibrate the SO₂-camera data in real time and to correct for the radiative transfer effects.