

First Stages of the Formation of the South Seasonal Cap in Early Southern Winter as Observed by OMEGA/Mex

Y. Langevin (1), M. Vincendon (2), J-P. Bibring (1), B. Gondet (1), and F. Poulet (1)

(1) Institut d'Astrophysique Spatiale, CNRS / Univ. Paris-Sud 11, Orsay, France (yves.langevin@ias.u-psud.fr, +33 1 69858675), (2) Brown University, Providence, Rhode Island USA

Observations in the visible [1] demonstrated that the retreat of the southern seasonal is very asymmetrical from Ls 230° to Ls 300°, ice extending much further North over a range of longitudes (270° E to 0° E) corresponding to the “bright cap”. Observations by TES demonstrated that the bright regions corresponding to the visible cap are at the equilibrium temperature of CO₂ ice, as well as the cryptic region, which exhibits low albedos (0.2 – 0.25) close to mid southern spring (Ls 225°). Observations by OMEGA/Mex have Mars Express have demonstrated that the Southern seasonal cap is indeed spectrally dominated by CO₂ ice [3, 4]. The low albedo of the cryptic region results from dust contamination on the surface [3] most likely linked to a venting process [5] when CO₂ ice sublimates in contact with the underlying surface. OMEGA observed that the very high albedos are linked to large equivalent grain sizes on the bright cap (270°E to 0°E) [4]. These characteristics have been associated with global climate evolution models [6, 7] with a major role played by the two large southern basins, Hellas and Argyre, in the circulation patterns [6]. A possible interpretation of the long lasting cap over the “bright cap” range of longitudes is that the CO₂ deposit on the surface is initiated by the sedimentation of small CO₂ ice grains or H₂O ice grains on the surface followed by the condensation of a layer CO₂ directly from the atmosphere. If this is the case, the surface underlying the bright cap regions is protected from photons penetrating the overlying large-grained CO₂ layer, which inhibits the venting process, delaying the sublimation of the CO₂ ice layer until late spring.

Observations by OMEGA close to the southern terminator in early winter (Ls 15°) at high latitudes (70°) obtained in April 2004 and November 2009 correspond to very high incidences (~ 85° or more). This requires a careful evaluation of the aerosol contribution, at the limit of the range of validity of a plane-parallel model [8], and a 3-D model taking into account the curvature of the planet [9]. The first conclusions are that the optical depth of dust is highly variable both spatially and temporally. At longitudes corresponding to the bright cap (e.g. 350° - 0°), the retrieved surface albedos are very high (60% or more), with a spectral signature corresponding to nearly pure, relatively fine-grained CO₂ ice (H₂O ice content < 10 ppm). High optical depths correspond to very low contrast related to topography. In such regions, the CO₂ ice signature is still observed, with a strong blue slope indicating that very fine-grained aerosols (0.5 μm in size or less) are present. OMEGA/Mex observations support the formation of ice grains in the atmosphere before sedimentation early in southern winter, either from homogeneous condensation or from heterogeneous condensation on very fine grained H₂O ice. These results support the concept that a thin layer of small CO₂ ice grains sedimenting from the atmosphere in early southern winter is at the origin of the long-lasting “bright cap” region of the southern seasonal cap.

- [1] P. B. James et al. J. Geophys. Res. 84, p. 2889 (1979),
- [2] H. H. Kieffer et al., J. Geophys. Res. 105, p. 8263 (2000)
- [3] Y. Langevin et al., Nature 442, p. 831 (2006); [4] Y. Langevin et al., J. Geophys. Res. 112, E08S12 (2007)
- [5] H. Kieffer, J. Geophys. Res. 112, E08005 (2007); [6] A. Colaprete et al., Nature 435, p. 184 (2005)
- [7] F. Montmessin et al., J. Geophys. Res. 109, doi: 10.1029/2004JE002284 (2004)
- [8] M. Vincendon et al., J. Geophys. Res. 112, E08S13 (2007); [9] M. Vincendon and Y. Langevin, Icarus, in press