

Application of GLIMMER-CISM to Pine Island Glacier

Tony Payne (1), Steve Price (2), Anne Le Brocq (3), and Rupert Gladstone (1)

(1) University of Bristol, School of Geographical Sciences, Bristol, United Kingdom., (2) Fluid Dynamics Group Los Alamos National Laboratory T-3, Mail Stop B216 Los Alamos, NM 87545, U.S.A. , (3) Durham University Department of Geography Science Laboratories South Road, Durham, United Kingdom.

We use a three-dimensional, first-order stress model to simulate the flow of Pine Island Glacier, West Antarctica. Observed, ice-surface velocities are used to tune the basal traction field used in the model. Several different traction-slip laws are employed including linear viscous and plastic ones. The resultant flow model is then used to simulate the effects of various ice shelf thinning and ground-line retreat scenarios. Although, the majority of the experiments to be reported use a fixed grounding line location, we conduct some initial experiments where small changes in grounding line location are allowed to occur and feedback into the geometry of the ice stream and, therefore, its flow dynamics.