

Recent increases in global HFC-23 emissions and early trends in other HFCs

Steve Montzka (1), Lambert Kuijpers (2), Lloyd Miller (3), Mark Battle (4), Murat Aydin (5), Kristal Verhulst (5), Eric Saltzman (5), David Fahey (1), Ben Miller (3), and Bradley Hall (1)

(1) NOAA-ESRL, Boulder, Colorado, United States (Stephen.A.Montzka@noaa.gov), (2) Eindhoven Centre for Sustainability, Technical University Eindhoven, Eindhoven, Netherlands, (3) CIRES, Univ of Colorado, Boulder, Colorado, United States, (4) Dept. of Physics and Astronomy, Bowdoin College, Brunswick, Maine, United States, (5) Earth Systems Science, University of California, Irvine, California, United States

Hydrofluorocarbons (HFCs) generally have high global warming potentials and are used as substitutes for ozone-depleting gases. Trifluoromethane (HFC-23) is an unintended by-product of chlorodifluoromethane (HCFC-22) production and has the longest lifetime (270 yr) and largest 100-yr global warming potential (14,800) of all the most commonly produced HFCs. Firn-air and ambient air measurements of HFC-23 from three firn sampling excursions to Antarctica between 2001 and 2009 are used to construct a consistent atmospheric history for this chemical in the Southern Hemisphere. The results show continued increases in the atmospheric abundance of HFC-23 and they imply substantial increases in HFC-23 global emissions since 2003. The increases in HFC-23 emissions are coincident with rapidly increasing HCFC-22 production in developing countries and are observed despite efforts in recent years to limit emissions of HFC-23 through the Kyoto Protocol's Clean Development Mechanism. These results will be considered along with new observations of additional HFCs from archived air, firn air, and ongoing flask-air measurements. Summed together, atmospheric increases observed for HCFCs and HFCs accounted for ~9% of the increase in total direct radiative forcing from anthropogenic gases during 2003-2008, an addition that was slightly larger than that attributable to N₂O global mixing ratio increases over this same period.