

The Cretaceous-Paleogene boundary in the shallow northeastern Mexican foreland basins: Evidence for paleoseismic liquefaction, tsunami deposition, and Chicxulub ejecta

Peter Schulte (1), Jan Smit (2), Alex Deutsch (3), Andrea Friese (1), and Kilian Beichel (1)

(1) GeoZentrum Nordbayern, Universität Erlangen, D-91054 Erlangen, Germany (schulte@geol.uni-erlangen.de, 49(0)9131-85-22514), (2) Faculty of Earth and Life Sciences, Vrije Universiteit, de Boelaan 1085, 1081HV Amsterdam, Netherlands, (3) Institut für Planetologie, WWU Münster, D-48149 Münster, Germany

Understanding the depositional sequence and composition of impact ejecta is critical for the interpretation of timing and effects of the Chicxulub impact regarding the mass extinction at the Cretaceous-Paleogene (K-Pg) boundary. Preliminary investigations have shown that the shallow La Popa and Parras foreland basins in northeastern Mexico both feature outstanding and continuous 3D exposures of the Chicxulub ejecta-rich, K-Pg boundary event deposit (Lawton et al., 2005).

The m-thick sand-siltstone interval directly underlying the ejecta-rich mass flows shows evidence of slumping and liquefaction, locally leading to complete disorganization and disruption of the pre-impact late Cretaceous sedimentary sequence. The subsequent ejecta-rich sequence consists of an up to one m-thick basal carbonate-rich bed that discontinuously fills a valley-like topography. Besides abundant silicic and carbonate ejecta spherules (up to 50%) that are excellently preserved, this bed includes abundant mollusks and gastropod shells, as well as vertebrate bones and teeth. The conglomeratic bed is overlain by a series of alternating fine- to medium grained calcareous sandstones with shell debris and ejecta that were deposited by repeated currents / mass flow events incorporating varying source areas. Hummocky-cross-stratified strata that mark the return to a normal out-shelf depositional regime conformably overlie these sandstones.

We interpret this sequence as evidence for presumably seismic-induced sediment liquefaction followed by a series of impact-related tsunami deposits. The specific depositional sequence and Fe-Mg-rich ejecta composition as well as the petrography of the sandstones all closely link the K-Pg boundary sequence in the La Popa and Parras basin to the well-known deep-water K-Pg sites in the Gulf of Mexico (e.g. El Mimbral; Smit et al., 1996; Schulte and Kontny, 2005).

Lawton, T.F., et al., 2005, Geology, v. 33, p. 81-84.

Smit, J. et al., 1996, GSA Special Paper v. 307, p. 151-182.

Schulte, P. and Kontny, A., GSA Special Paper v. 384, p. 191-221.