Geophysical Research Abstracts Vol. 12, EGU2010-13521, 2010 EGU General Assembly 2010 © Author(s) 2010



## Tree ring and ice core time scales around the Santorini eruption

Elin Löfroth (1), Raimund Muscheler (1), Ala Aldahan (2,3), Göran Possnert (4), and Ann-Marie Berggren (2) (1) Department of Earth and Ecosystem Sciences, Division of Geology, Lund University, Lund, Sweden, (2) Department of Earth Sciences, Uppsala University, Uppsala, Sweden, (3) Department of Geology, United Arab Emirates University, Al Ain, United Arab Emirates, (4) Tandem Laboratory, Uppsala University, Uppsala, Sweden.

When studying cosmogenic radionuclides in ice core and tree ring archives around the Santorini eruption a  $\sim$ 20 year discrepancy was found between the records (Muscheler 2009). In this study a new  $^{10}$ Be dataset from the NGRIP ice core is presented. It has a resolution of 7 years and spans the period 3752-3244 BP (1803-1295 BC). The NGRIP  $^{10}$ Be record and the previously published  $^{10}$ Be GRIP record were compared to the IntCal datasets to further investigate the discrepancy between the ice core and tree ring chronologies. By modelling the  $^{14}$ C production rate based on atmospheric  $^{14}$ C records a comparison could be made to the  $^{10}$ Be flux which is assumed to represent the  $^{10}$ Be production rate. This showed a time shift of  $\sim$ 23 years between the records. The sensitivity of the results to changes in important model parameters was evaluated. Uncertainties in the carbon cycle model cannot explain a substantial part of the timing differences.

Potential influences of climate and atmospheric processes on the  $^{10}$ Be deposition were studied using  $\delta^{18}$ O from the respective cores and GISP2 ice core ion data. The comparison to  $\delta^{18}$ O revealed a small but significant correlation between  $^{10}$ Be flux and  $\delta^{18}$ O when the  $^{14}$ C-derived production signal was removed from the  $^{10}$ Be curves. The ion data, as proxies for atmospheric circulation changes, did not show any correlations to the  $^{10}$ Be record or the  $^{10}$ Be/ $^{14}$ C difference.

When including possible data uncertainties there is still a minimum discrepancy of  $\sim \! 10$  years between the  $^{10}$ Be ice core and the  $^{14}$ C tree ring record. Due to lack of alternative explanations it is concluded that the ice core and/or the tree ring chronologies contains unaccounted errors in this range. This also reconciles the radiocarbon 1627-1600 BC (Friedrich et al., 2006) and ice core  $1642\pm 5$  BC (Vinther et al., 2006) datings of the Santorini eruption.

Friedrich, W.L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., & Talamo, S., 2006: Santorini eruption radiocarbon dated to 1627-1600 BC. *Science* 312, 548-548.

Muscheler, 2009: <sup>14</sup>C and <sup>10</sup>Be around 1650 cal BC. *In* Warburton, D.A., (ed.): Time's Up! Dating the Minoan Eruption of Santorini: acts of the Minoan Eruption Chronology Workshop, Sandbjerg November 2007: *Monographs of the Danish Institute at Athens*. Aarhus University Press, Aarhus. 298 pp.

Vinther, B.M., Clausen, H.B., Johnsen, S.J., Rasmussen, S.O., Andersen, K.K., Buchardt, S.L., Dahl-Jensen, D., Seierstad, I.K., Siggaard-Andersen, M.L., Steffensen, J.P., Svensson, A., Olsen, J., & Heinemeier, J., 2006: A synchronized dating of three Greenland ice cores throughout the Holocene. *Journal of Geophysical Research-Atmospheres* 111, 11.