Geophysical Research Abstracts Vol. 12, EGU2010-13527-1, 2010 EGU General Assembly 2010 © Author(s) 2010

The $^{10}\mbox{Be}$ isotopic signature of the Brunhes/Matuyama field reversal from marine sediments

Johannes Lachner and Marcus Christl Laboratory of Ion Beam Physics, ETH Zürich, Zürich, Switzerland (lachner@phys.ethz.ch)

Marine sediments can be used to reconstruct ¹⁰Be production changes, which are mainly caused by variations of the geomagnetic field strength. Here we use the so called authigenic ¹⁰Be/⁹Be ratio as a proxy for geomagnetic paleointensity. With a constant flux tracer (²³⁰Th) the ¹⁰Be flux to the sea floor can be estimated. But this method is limited to about 350 kyrs by the lifetime of ²³⁰Th, whereas ⁹Be-normalization can be applied to reconstruct the relative variation of the geomagnetic field beyond the possibilities of Th-normalization. A global signature of a magnetic field reversial or an excursion in the ¹⁰Be/⁹Be ratio can be used to link the chronologies of ice cores with marine and terrestrial sediments.

A novel method to directly measure the natural 10 Be/ 9 Be ratio with low energy Accelerator Mass Spectrometry (AMS) at the compact accelerator Tandy (600 kV) is applied. This method simplifies the determination of the 10 Be/ 9 Be ratio in natural samples, because only a single measurement is necessary. With this technique of carrier-free AMS on a small machine a highly resolved data record in a time range 70 ka around the field reversal in up to 1 ka resolution was recorded around the expected maximum according to the magnetic inclination data.

Five locations distributed in the Indic, Pacific and Atlantic at different latitudes have been chosen for sampling and determination of the authigenic ¹⁰Be/⁹Be ratio. First data from these cores in the time range of the Brunhes-Matuyama field reversion will be presented.