A simple model for the self-organised evolution of road networks

Sonic H.Y. Chan (1), Reik V. Donner (1,2,3), and Dirk Helbing (4)

(1) Dresden University of Technology, Institute for Transport and Economics, Dresden, Germany (donner@vwi.tu-dresden.de, 0049 351 46336809), (2) Max Planck Institute for Physics of Complex Systems, Dresden, Germany, (3) Potsdam Institute for Climate Impact Research, Research Domain IV Transdisciplinary Concepts & Methods, Potsdam, Germany, (4) Chair of Sociology, in particular of Modeling and Simulation, ETH Zürich, Switzerland

Recent studies have revealed a strong similarity of the geometric properties of urban road networks, which suggests that the growth of urbanised areas can be understood as being controlled by simple self-organisation mechanisms. In this work, we present a mathematical model that allows explaining the most prominent geometric features of urban road systems in terms of an evolving network whose dynamics is controlled by a simple two-step growth algorithm. The basic ingredients of our model are (i) the radial expansion of urbanised areas, which is triggered by a random site picking that corresponds to the planning of new spots of urbanisation, and (ii) the economically efficient establishment of new links perpendicular to existing roads, which represents the generation of necessary transportation and supply infrastructures. It is demonstrated that the geometric properties of the resulting road networks are in excellent agreement with corresponding empirical findings.