

Hydrochemistry and noble gas origin of geothermal waters of Icheon and Pocheon area in South Korea

Chan Ho Jeong (1), Seon Ho Shin (1), Keisuke Nagao (2), Kyu Han Kim (3), Yung Kwon Koh (4), and Gun Young Kim (4)

(1) Daejeon University, Geological Engineering, Daejeon, South Korea (chjeong@dju.ac.kr), (2) Laboratory for Earthquake of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan, (3) Department of Science Education, Ehwa Woman University, Seoul, 120-750, Korea, (4) Korea Atomic Energy Research Institute, Daejeon, 305-353, Korea

Hydrochemical, stable isotopic (^{18}O and D) and noble gas isotopic analyses of seven geothermal water samples, eleven groundwater samples and six surface water samples collected from the Icheon and Pocheon area were carried out to find out hydrochemical characteristics, and to interpret the source of noble gases and the geochemical evolution of the geothermal waters.

The geothermal waters show low temperature type ranging from 21.5 to 31.4 [U+2103] and the pH value between 6.69 and 9.21. Electrical conductivity of geothermal waters has the range from 310 to 735 $\mu\text{S}/\text{cm}$. Whereas the geothermal in the Icheon area shows the geochemical characteristics of neutral pH, the Ca-HCO₃(or Ca(Na)-HCO₃) chemical type and a high uranium content, the geothermal water in the Pocheon area shows the characteristics of alkaline pH, the Na-HCO₃ chemical type and a high fluorine content. These characteristics indicate that the geothermal water in the Icheon area is under the early stage in the geochemical evolution, and that geothermal water in the Pocheon area has been geochemically evolved. The ^{18}O and D values of geothermal waters show the range of -10.1~-8.69‰ and from -72.2~-60.8‰, respectively, and these values supply the information of the recharge area of geothermal waters.

The $^{3}\text{He}/^{4}\text{He}$ ratios of the geothermal waters range from 0.09×10^{-6} to 0.65×10^{-6} which are plotted above the mixing line between air and crustal components. Whereas the helium gas in the Icheon geothermal water was mainly provided from the atmospheric source mixing with the mantle(or magma) origin, the origin of helium gas in the Pocheon geothermal water shows a dominant crustal source. $^{40}\text{Ar}/^{36}\text{Ar}$ ratios of geothermal water are in the range of an atmosphere source.

Key words: hot spring water, hydrochemical composition, low temperature type, $^{3}\text{He}/^{4}\text{He}$ ratios, crustal source