

Accelerating dense-water flow down a slope

John M. Huthnance

NERC Proudman Oceanographic Laboratory, Liverpool, United Kingdom (jmh@pol.ac.uk, +44-(0)151-7954801)

Where water is denser on a shallow shelf than in the adjacent deep ocean, it tends to flow down the slope from shelf to ocean. The flow can be in a steady bottom boundary layer for moderate combinations of up-slope density gradient $-\rho_{x\infty}$ and bottom slope (angle θ to horizontal):

$$b \equiv |\rho_{x\infty}| g \sin\theta / (f^2 \rho_0) < 1.$$

Here g is acceleration due to gravity, ρ_0 is a mean density and f is twice the component of earth's rotation normal to the sloping bottom. For stronger combinations of horizontal density gradient and bottom slope, the flow accelerates. Analysis of an idealised initial-value problem shows that when $b \geq 1$ there is a bottom boundary layer with down-slope flow, intensifying exponentially at a rate $fb^2(1+b)^{-1/2}/2$, and slower-growing flow higher up. For stronger stratification $b > 2^{1/2}$, i.e. relatively weak Coriolis constraint, the idealised problem posed here may not be the most apposite but suggests that the whole water column accelerates, at a rate $[g\rho_0^{-1}|\rho_{x\infty}|\sin\theta]^{1/2}$ if f is negligible.