

A detrital thermochronological study on the late Messinian to Piacenzian sedimentary succession of the Valdelsa basin, Northern Apennines, Italy: detecting tectonic and climatic signals

Francesca Tangocci (1), Maria Laura Balestrieri (1), Marco Benvenuti (2), and Sara Del Conte (2)

(1) C.N.R., Istituto geoscienze e georisorse, C.N.R., Pisa, Italy (balestrieri@igg.cnr.it), (2) Earth Sciences Department, Florence University, Via La Pira 4, 50121 Firenze, Italy

The aim of the study is to detect and discriminate signals of tectonic activity and climate forcing in an intermontane basin of the northern Appennines, through a detrital thermochronological study of the basin sedimentary succession coupled with a detailed reconstruction of the paleogeography. Eighteen samples were collected from the sandy and pebbly fluvial to shallow marine successions of the Valdelsa Basin, a NW-SE trending depression bounded to the SW by the Mid Tuscan Ridge and to the NE and SE by the ridge M. Albano- Monti del Chianti. Four samples come from the bedrock of the Macigno Formation, a late Oligocene – early Miocene foredeep deposits. The apatite fission-track (AFT) ages for the bedrock vary between 7.8 ± 1.2 and 10.8 ± 2.0 Ma and for the sediments from 5.5 ± 2.8 to 16.6 ± 2.4 Ma. The AFT grain-age distributions of the sediment samples are generally characterized by two components, one younger peak (P1) varying between 3.8 ± 1.7 and 9.5 ± 1.0 Ma and one older peak (P2) varying from 11.1 ± 2.2 to 41.2 ± 10 Ma. In orogenic setting, closure of low-temperature chronometers is commonly associated with exhumation-related cooling caused by erosion or tectonic unloading. The lag-time defined as the difference between the time of closure of a chronological system in the source region and the time of the deposition in the basin can provides a measure of the rate of exhumation. The average lag-time of the P1 component of the Valdelsa Basin samples is ca. 4 Ma and a mean exhumation rate of 1.1-0.9 mm/yr can be estimated. The curves, representing the variation of the lag time, for the two components, show a general trend characterized by decreasing lag-time going upwards in sedimentary succession. This implies increasing cooling rates in the source region over time. Single variations of the lag-time curve correlate with recognised tectonic pulses of the basin NE shoulder and in some cases with global sea-level changes related to intense climatic fluctuation. In particular, four events, mainly controlled by glacio-eustatic cycles, are recognized as being recorded in the lag-time variation curve of component P1: (1) a significant transgression at Miocene – Pliocene boundary, related to the re-establishing of the connection between Atlantic Ocean and Mediterranean Sea after the Messinian salinity crisis; (2) in upper Zanclean (?)-Piacenzian an eustatic level fall is caused by an important continental glaciation in Northern Hemisphere at 3.5 Ma; (3) in the Piacenzian, an important rising in the sea-level, associated with warm and possibly humid climate, overwhelm the tectonic signal; (4) in upper Piacenzian – Gelasian a replacement, in the whole Valdelsa Basin, of a fluvio-deltaic and marine-coastal environment with an alluvial environment is probably caused by the rising of the north-eastern ridge of the basin and by a significant drop in sea-level caused by an important cold period occurring around 2.6 Ma (now the base of Quaternary). In this case the tectonic and climatic signal coupled.