

Experimental determination of the exponent beta for oxygen triple isotope fractionation between carbon dioxide and water

Magdalena Hofmann, Balázs Horváth, and Andreas Pack

Georg-August-Universität, Geoscience Center, Department of Isotope Geology, Goldschmidtstr. 1-3, D-37077 Göttingen, Germany (magdalena.hofmann@geo.uni-goettingen.de)

Because of the coupling between $\alpha_{CO_2-H_2O}^{18/16}$ and $\alpha_{CO_2-H_2O}^{17/16}$ ($\ln \alpha_{CO_2-H_2O}^{17/16} = \beta_{CO_2-H_2O} \ln \alpha_{CO_2-H_2O}^{18/16}$), not only $\delta^{18}\text{O}$, but also $\delta^{17}\text{O}$ of atmospheric CO_2 is determined by CO_2 -water isotope exchange. Thus, fundamental understanding of $\Delta^{17}\text{O}$ of CO_2 requires precise information on $\beta_{CO_2-H_2O}$. Here, we present the first experimental data on $\beta_{CO_2-H_2O}$ at 23°C.

We equilibrated bottle CO_2 ($\delta^{18}\text{O} = 27.7\text{\textperthousand}$) with distilled local tap water (Göttingen, December 2009) at 23°C for 68 hours. The molar $\text{H}_2\text{O}/\text{CO}_2$ ratio was >400. At the end of the experiment, CO_2 was isolated from the water. The resultant $\delta^{18}\text{O}$ value of the CO_2 was $+32.5\text{\textperthousand}$ giving a $\delta^{18}\text{O}$ value of the tap water of $-8.4\text{\textperthousand}$ [1]. This value is typical for local meteoric water and is consistent with preliminary water isotope analyses in the Göttingen laboratory ($\delta^{18}\text{O} = -8\text{\textperthousand}$). The distilled water is assumed to fall on the water fractionation line with $\beta = 0.5279$ [2]. The CO_2 gas was analysed for its $\Delta^{17}\text{O}_{TFL}$ signature based on CO_2 - CeO_2 equilibration at 685°C and subsequent mass spectrometric analysis of CeO_2 by infrared-laser fluorination [3,4]. The $\Delta^{17}\text{O}_{TFL}$ values were determined relative to a fractionation line with a slope of 0.5251 ± 0.0085 . The exponent β for the triple oxygen isotope fractionation between CO_2 and water can be calculated according to the relation:

$$\beta_{CO_2-H_2O} = \beta_{TFL} + [(\beta_{CO_2-CeO_2} - \beta_{TFL})(\delta^{18}\text{O}_{SMOW}^{CO_2} - \delta^{18}\text{O}_{SMOW}^{CeO_2}) - \Delta^{17}\text{O}_{TFL}^{H_2O} + \Delta^{17}\text{O}_{TFL}^{CeO_2}] / (\delta^{18}\text{O}_{SMOW}^{CO_2} - \delta^{18}\text{O}_{SMOW}^{H_2O})$$

β_{TFL} : slope of the terrestrial fractionation line (TFL) defined by rocks and minerals

$\beta_{CO_2-CeO_2}$: exponent for the triple oxygen isotope fractionation between CO_2 and CeO_2

$\delta^{18}\text{O}_{SMOW}^x = 1000 \ln (\delta^{18}\text{O}_{SMOW}^x / 1000 + 1)$, where x represents CO_2 , CeO_2 or H_2O

$\Delta^{17}\text{O}_{TFL}^y$: deviations from the TFL, where y represents CeO_2 or H_2O

The CO_2 -water equilibration experiment suggests that $\beta_{CO_2-H_2O} = 0.5218 \pm 0.0016$ at 23°C. Based on theory, Matsuhisa et al. [5] propose $\beta_{CO_2-H_2O} = 0.5235$ at 25°C. The data suggest that CO_2 being in equilibrium with seawater ($t = 23^\circ\text{C}$) has a $\Delta^{17}\text{O}_{TFL}$ value of $-0.14\text{\textperthousand}$

We demonstrate that the equilibrium exponent β can deviate significantly from the high-temperature equilibrium value of 0.529 [6]. Different β values have to be considered when using the $\Delta^{17}\text{O}$ value of CO_2 for atmospheric modelling [7] or when using $\Delta^{17}\text{O}$ of skeletal apatite as CO_2 -proxy [8,9].

References:

- [1] O'Neil, J.R. and L.H. Adami, J. Phys. Chem., 1969. 73 (5): p. 1553-1558.
- [2] Barkan, E. and B. Luz, Rapid Commun. Mass Spec., 2005. 19 (24): p. 3737-3742.
- [3] Hofmann, M. and A. Pack, EGU. 2009. Vienna. 11
- [4] Hofmann, M. and A. Pack, Anal. Chem., 2010. in revision.
- [5] Matsuhisa, Y., J.R. Goldsmith, and R.N. Clayton, Geochim. Cosmochim. Acta, 1978. 42: p. 173-182.
- [6] Young, E.D., A. Galy, and H. Nagahara, Geochim. Cosmochim. Acta, 2002. 66 (6): p. 1095-1104.

- [7] Hoag, K.J., et al., *Geophys. Res. Lett.*, 2005. 32 (L02802): p. 1-5.
- [8] Pack, A., A. Süssenberger, A. Gehler, and J. Wotzlaw, *EGU*. 2009. Vienna. 11
- [9] Gehler, A. and A. Pack, *EGU*. 2010. Vienna. this volume