

Palaeoclimatic conditions during Neoproterozoic: case study from Iran & Australia (Tasmania)

Mohammad Hossein Adabi and Mina Khatibi Mehr

Shahid Beheshti University, Faculty of Earth Sciences (Department of Geology), Tehran, Islamic Republic Of Iran
(minakhmehr@gmail.com)

Petrographic, elemental and isotopic composition of Neoproterozoic least- altered dolomites at Renison mine (Western Australia) and Gachin (Zagros, Iran sections have been studied to determine the climatic conditions during Neoproterozoic.

The Neoproterozoic Era was a time of repeated continental glaciations, including one of the Earth's most severe refrigerations (Kaufman et al., 1993). Three major phases of glaciations (Sturtian glacial, ~715 Ma, Marinoan glacial, ~630 Ma and Gaskiers glaciation ~580 Ma) were widespread during Neoproterozoic (Hoffman et al., 2004; Knoll et al., 2004; Calver et al., 2004). In this period, extensive low latitude ice sheets and glacio-marine deposits were reported (Kasting, 1992; Williams, 1993). Thus, the Neoproterozoic world has the most extensive glaciation in the earth's history and truly icehouse climate (Hambrey, 1992).

Widespread glaciogenic deposits of Neoproterozoic age occurs in a belt of sedimentary basins across central Australia (Brookfield, 1994) and also in Tasmania (Claver et al., 2004, Kendall et al., 2007). The association of dolomite with tillites, and particularly the presence of glacial erratics in these sediments, indicates cold water conditions throughout most of the Neoproterozoic time. In western Tasmania thick diamictite units and the presence of dropstones in laminated dolosiltite have been reported by (Calver, 1995; Calver et al., 2004). The carbon isotope chemostratigraphy gives an age range of between 570-800 Ma for the Renison carbonates (Adabi, 1997). These ages range corresponds to Gaskiers and Sturtian glacial respectively. The calculated palaeotemperature of seawater during the Neoproterozoic, considering $w = -6\% \Delta$ (Tucker, 1986), and least-altered dolomites ^{18}O values of $-1 \pm 1\% \Delta$ indicates that the seawater temperatures was around $12^\circ \pm 4^\circ\text{C}$ (Land equation) in Tasmania.

Petrographically, dolomites in Gachin (Zagros) section in Iran are interpreted as least-altered dolomites, as original depositional textures are well preserved and show little evidence of recrystallization and diagenetic reorganization. Only small percentages of Neoproterozoic dolomites of Zagros and central Iran are synsedimentary or formed during early diagenesis. Most dolomites are medium to coarsely crystalline, due to an increased amount of diagenetic alteration. Geochemical evidence also confirms that dolomites are the least-altered dolomites in Gachin, Zagros, Iran. These dolomites have high values of Mg, low values of Fe and Mn, high values of Sr and Na and heavy ^{18}O values and fall within the cold water dolomite fields of Renison, and least-altered Neoproterozoic dolomite of California. This dolomite probably formed in cold water conditions, which corresponds to the cold climatic condition during Neoproterozoic.

Geochemical evidence also confirms that dolomites are the least-altered dolomites. These dolomites have high values of Mg, low values of Fe and Mn, high values of Sr and Na and heavy ^{18}O values and fall within the cold water dolomite fields of Renison, and least-altered Neoproterozoic dolomite of California. These dolomite probably formed in cold water conditions, which corresponds to the cold climatic condition during Neoproterozoic. However, the absence of tillite, diamictite and the lack of dropstones or glacial erratics in carbonate sequences indicate that climatic conditions in Iran was not as cold as other parts of the world, such as Australia or USA during Neoproterozoic and Gaskiers glacial period (~580 Ma) was not active in Iran. The heaviest ^{18}O values ($-0.61\% \Delta$) in Gachin least-altered dolomite correspond to paleotemperature of about 18°C

(Land equation). Cold water marine dolomite from other geologic periods, such as Barremian –age sediments with temperatures as low as 15°C, and from the West Florida Neogen cold deep water marine dolomite with palaeotemperature of 4.5 to 12°C, have been reported recently (Flood and Chivas, 1995).