

Visualising interactive flood risk maps in a dynamic Geobrowser

Desmond Yaw Manful (1,2), Yi He (2), Hannah Cloke (2), Florian Pappenberger (3), Zhijia Li (4), Fredrik Wetterhall (2), Yingchun Huang (4), and Yuzhong Hu (5)

(1) Institute of Landscape Planning & Ecology, University of Stuttgart, Hydro-ecology, Stuttgart, Germany (dm@ilpoe.uni-stuttgart.de, +49 711 68583381), (2) Geography Department, King's College London, London, United Kingdom (yi.he@kcl.ac.uk), (3) European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom (florian.pappenberger@ecmwf.int), (4) Hydrology and Water Resources, Hohai University, Nanjing, China (zhijia-li@vip.sina.com), (5) Hydrological Bureau of Anhui Province, Hefei, China (jxxbc@163.com)

Communicating flood forecast products effectively to end-users is the final step in the flood event simulation process. A prototype of the Novel Flood Early Warning System (NEWS) based on the TIGGE (THORPEX Interactive Grand Global Ensemble) database explores new avenues to visualise flood forecast products in a dynamic and interactive manner. One of the possibilities NEWS is currently assessing is Google Maps. Google Maps is a basic web mapping service application and technology provided by Google, free (for non-commercial use). It powers many map-based services including maps embedded on third-party websites via the Google Maps API. Creating a customized map interface requires adding the Google JavaScript code to a page, and then using Javascript functions to add points to the map.

Flood maps allow end-users to visualise and navigate a world that is too large and complex to be seen directly. The NEWS software will attempt to deal with the following issues:

- Uncertainty visualization in hazards maps
- Visualizing uncertainty for sector specific risk managers
- Uncertainty representation of point and linear data

The objective is improve the information content of flood risk maps making them more useful to specific end-users.